

 Navigation

 	
 index

 	django-rest-framework 2 stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/django-rest-framework-2/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/django-rest-framework-2/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	django-rest-framework 2 stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 api-guide/versioning.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: versioning.py

Versioning

Versioning an interface is just a “polite” way to kill deployed clients.

—

 Roy Fielding [http://www.slideshare.net/evolve_conference/201308-fielding-evolve/31].

API versioning allows you to alter behavior between different clients. REST framework provides for a number of different versioning schemes.

Versioning is determined by the incoming client request, and may either be based on the request URL, or based on the request headers.

There are a number of valid approaches to approaching versioning. Non-versioned systems can also be appropriate [http://www.infoq.com/articles/roy-fielding-on-versioning], particularly if you’re engineering for very long-term systems with multiple clients outside of your control.

Versioning with REST framework

When API versioning is enabled, the request.version attribute will contain a string that corresponds to the version requested in the incoming client request.

By default, versioning is not enabled, and request.version will always return None.

Varying behavior based on the version

How you vary the API behavior is up to you, but one example you might typically want is to switch to a different serialization style in a newer version. For example:

def get_serializer_class(self):
 if self.request.version == 'v1':
 return AccountSerializerVersion1
 return AccountSerializer

Reversing URLs for versioned APIs

The reverse function included by REST framework ties in with the versioning scheme. You need to make sure to include the current request as a keyword argument, like so.

from rest_framework.reverse import reverse

reverse('bookings-list', request=request)

The above function will apply any URL transformations appropriate to the request version. For example:

		If NamespacedVersioning was being used, and the API version was ‘v1’, then the URL lookup used would be 'v1:bookings-list', which might resolve to a URL like http://example.org/v1/bookings/.

		If QueryParameterVersioning was being used, and the API version was 1.0, then the returned URL might be something like http://example.org/bookings/?version=1.0

Versioned APIs and hyperlinked serializers

When using hyperlinked serialization styles together with a URL based versioning scheme make sure to include the request as context to the serializer.

def get(self, request):
 queryset = Booking.objects.all()
 serializer = BookingsSerializer(queryset, many=True, context={'request': request})
 return Response({'all_bookings': serializer.data})

Doing so will allow any returned URLs to include the appropriate versioning.

Configuring the versioning scheme

The versioning scheme is defined by the DEFAULT_VERSIONING_CLASS settings key.

REST_FRAMEWORK = {
 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.NamespaceVersioning'
}

Unless it is explicitly set, the value for DEFAULT_VERSIONING_CLASS will be None. In this case the request.version attribute will always return None.

You can also set the versioning scheme on an individual view. Typically you won’t need to do this, as it makes more sense to have a single versioning scheme used globally. If you do need to do so, use the versioning_class attribute.

class ProfileList(APIView):
 versioning_class = versioning.QueryParameterVersioning

Other versioning settings

The following settings keys are also used to control versioning:

		DEFAULT_VERSION. The value that should be used for request.version when no versioning information is present. Defaults to None.

		ALLOWED_VERSIONS. If set, this value will restrict the set of versions that may be returned by the versioning scheme, and will raise an error if the provided version if not in this set. Note that the value used for the DEFAULT_VERSION setting is always considered to be part of the ALLOWED_VERSIONS set. Defaults to None.

		VERSION_PARAM. The string that should used for any versioning parameters, such as in the media type or URL query parameters. Defaults to 'version'.

You can also set your versioning class plus those three values on a per-view or a per-viewset basis by defining your own versioning scheme and using the default_version, allowed_versions and version_param class variables. For example, if you want to use URLPathVersioning:

from rest_framework.versioning import URLPathVersioning
from rest_framework.views import APIView

class ExampleVersioning(URLPathVersioning):
 default_version = ...
 allowed_versions = ...
 version_param = ...

class ExampleView(APIVIew):
 versioning_class = ExampleVersioning

API Reference

AcceptHeaderVersioning

This scheme requires the client to specify the version as part of the media type in the Accept header. The version is included as a media type parameter, that supplements the main media type.

Here’s an example HTTP request using the accept header versioning style.

GET /bookings/ HTTP/1.1
Host: example.com
Accept: application/json; version=1.0

In the example request above request.version attribute would return the string '1.0'.

Versioning based on accept headers is generally considered [http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned] as best practice [https://github.com/interagent/http-api-design#version-with-accepts-header], although other styles may be suitable depending on your client requirements.

Using accept headers with vendor media types

Strictly speaking the json media type is not specified as including additional parameters [http://tools.ietf.org/html/rfc4627#section-6]. If you are building a well-specified public API you might consider using a vendor media type [http://en.wikipedia.org/wiki/Internet_media_type#Vendor_tree]. To do so, configure your renderers to use a JSON based renderer with a custom media type:

class BookingsAPIRenderer(JSONRenderer):
 media_type = 'application/vnd.megacorp.bookings+json'

Your client requests would now look like this:

GET /bookings/ HTTP/1.1
Host: example.com
Accept: application/vnd.megacorp.bookings+json; version=1.0

URLPathVersioning

This scheme requires the client to specify the version as part of the URL path.

GET /v1/bookings/ HTTP/1.1
Host: example.com
Accept: application/json

Your URL conf must include a pattern that matches the version with a 'version' keyword argument, so that this information is available to the versioning scheme.

urlpatterns = [
 url(
 r'^(?P<version>[v1|v2]+)/bookings/$',
 bookings_list,
 name='bookings-list'
),
 url(
 r'^(?P<version>[v1|v2]+)/bookings/(?P<pk>[0-9]+)/$',
 bookings_detail,
 name='bookings-detail'
)
]

NamespaceVersioning

To the client, this scheme is the same as URLParameterVersioning. The only difference is how it is configured in your Django application, as it uses URL namespacing, instead of URL keyword arguments.

GET /v1/something/ HTTP/1.1
Host: example.com
Accept: application/json

With this scheme the request.version attribute is determined based on the namespace that matches the incoming request path.

In the following example we’re giving a set of views two different possible URL prefixes, each under a different namespace:

bookings/urls.py
urlpatterns = [
 url(r'^$', bookings_list, name='bookings-list'),
 url(r'^(?P<pk>[0-9]+)/$', bookings_detail, name='bookings-detail')
]

urls.py
urlpatterns = [
 url(r'^v1/bookings/', include('bookings.urls', namespace='v1')),
 url(r'^v2/bookings/', include('bookings.urls', namespace='v2'))
]

Both URLParameterVersioning and NamespaceVersioning are reasonable if you just need a simple versioning scheme. The URLParameterVersioning approach might be better suitable for small ad-hoc projects, and the NamespaceVersioning is probably easier to manage for larger projects.

HostNameVersioning

The hostname versioning scheme requires the client to specify the requested version as part of the hostname in the URL.

For example the following is an HTTP request to the http://v1.example.com/bookings/ URL:

GET /bookings/ HTTP/1.1
Host: v1.example.com
Accept: application/json

By default this implementation expects the hostname to match this simple regular expression:

^([a-zA-Z0-9]+)\.[a-zA-Z0-9]+\.[a-zA-Z0-9]+$

Note that the first group is enclosed in brackets, indicating that this is the matched portion of the hostname.

The HostNameVersioning scheme can be awkward to use in debug mode as you will typically be accessing a raw IP address such as 127.0.0.1. There are various online services which you to access localhost with a custom subdomain [https://reinteractive.net/posts/199-developing-and-testing-rails-applications-with-subdomains] which you may find helpful in this case.

Hostname based versioning can be particularly useful if you have requirements to route incoming requests to different servers based on the version, as you can configure different DNS records for different API versions.

QueryParameterVersioning

This scheme is a simple style that includes the version as a query parameter in the URL. For example:

GET /something/?version=0.1 HTTP/1.1
Host: example.com
Accept: application/json

Custom versioning schemes

To implement a custom versioning scheme, subclass BaseVersioning and override the .determine_version method.

Example

The following example uses a custom X-API-Version header to determine the requested version.

class XAPIVersionScheme(versioning.BaseVersioning):
 def determine_version(self, request, *args, **kwargs):
 return request.META.get('HTTP_X_API_VERSION', None)

If your versioning scheme is based on the request URL, you will also want to alter how versioned URLs are determined. In order to do so you should override the .reverse() method on the class. See the source code for examples.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/settings.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: settings.py

Settings

Namespaces are one honking great idea - let’s do more of those!

—

 The Zen of Python [http://www.python.org/dev/peps/pep-0020/]

Configuration for REST framework is all namespaced inside a single Django setting, named REST_FRAMEWORK.

For example your project’s settings.py file might include something like this:

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework.renderers.JSONRenderer',
),
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework.parsers.JSONParser',
)
}

Accessing settings

If you need to access the values of REST framework’s API settings in your project,
you should use the api_settings object. For example.

from rest_framework.settings import api_settings

print api_settings.DEFAULT_AUTHENTICATION_CLASSES

The api_settings object will check for any user-defined settings, and otherwise fall back to the default values. Any setting that uses string import paths to refer to a class will automatically import and return the referenced class, instead of the string literal.

API Reference

API policy settings

The following settings control the basic API policies, and are applied to every APIView class based view, or @api_view function based view.

DEFAULT_RENDERER_CLASSES

A list or tuple of renderer classes, that determines the default set of renderers that may be used when returning a Response object.

Default:

(
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer',
)

DEFAULT_PARSER_CLASSES

A list or tuple of parser classes, that determines the default set of parsers used when accessing the request.data property.

Default:

(
 'rest_framework.parsers.JSONParser',
 'rest_framework.parsers.FormParser',
 'rest_framework.parsers.MultiPartParser'
)

DEFAULT_AUTHENTICATION_CLASSES

A list or tuple of authentication classes, that determines the default set of authenticators used when accessing the request.user or request.auth properties.

Default:

(
 'rest_framework.authentication.SessionAuthentication',
 'rest_framework.authentication.BasicAuthentication'
)

DEFAULT_PERMISSION_CLASSES

A list or tuple of permission classes, that determines the default set of permissions checked at the start of a view. Permission must be granted by every class in the list.

Default:

(
 'rest_framework.permissions.AllowAny',
)

DEFAULT_THROTTLE_CLASSES

A list or tuple of throttle classes, that determines the default set of throttles checked at the start of a view.

Default: ()

DEFAULT_CONTENT_NEGOTIATION_CLASS

A content negotiation class, that determines how a renderer is selected for the response, given an incoming request.

Default: 'rest_framework.negotiation.DefaultContentNegotiation'

Generic view settings

The following settings control the behavior of the generic class based views.

DEFAULT_PAGINATION_SERIALIZER_CLASS

A class the determines the default serialization style for paginated responses.

Default: rest_framework.pagination.PaginationSerializer

DEFAULT_FILTER_BACKENDS

A list of filter backend classes that should be used for generic filtering.
If set to None then generic filtering is disabled.

PAGINATE_BY

The default page size to use for pagination. If set to None, pagination is disabled by default.

Default: None

PAGINATE_BY_PARAM

This setting is pending deprecation.

See the pagination documentation for further guidance on setting the pagination style.

The name of a query parameter, which can be used by the client to override the default page size to use for pagination. If set to None, clients may not override the default page size.

For example, given the following settings:

REST_FRAMEWORK = {
 'PAGINATE_BY': 10,
 'PAGINATE_BY_PARAM': 'page_size',
}

A client would be able to modify the pagination size by using the page_size query parameter. For example:

GET http://example.com/api/accounts?page_size=25

Default: None

MAX_PAGINATE_BY

This setting is pending deprecation.

See the pagination documentation for further guidance on setting the pagination style.

The maximum page size to allow when the page size is specified by the client. If set to None, then no maximum limit is applied.

For example, given the following settings:

REST_FRAMEWORK = {
 'PAGINATE_BY': 10,
 'PAGINATE_BY_PARAM': 'page_size',
 'MAX_PAGINATE_BY': 100
}

A client request like the following would return a paginated list of up to 100 items.

GET http://example.com/api/accounts?page_size=999

Default: None

SEARCH_PARAM

The name of a query parameter, which can be used to specify the search term used by SearchFilter.

Default: search

ORDERING_PARAM

The name of a query parameter, which can be used to specify the ordering of results returned by OrderingFilter.

Default: ordering

Versioning settings

DEFAULT_VERSION

The value that should be used for request.version when no versioning information is present.

Default: None

ALLOWED_VERSIONS

If set, this value will restrict the set of versions that may be returned by the versioning scheme, and will raise an error if the provided version if not in this set.

Default: None

VERSION_PARAMETER

The string that should used for any versioning parameters, such as in the media type or URL query parameters.

Default: 'version'

Authentication settings

The following settings control the behavior of unauthenticated requests.

UNAUTHENTICATED_USER

The class that should be used to initialize request.user for unauthenticated requests.

Default: django.contrib.auth.models.AnonymousUser

UNAUTHENTICATED_TOKEN

The class that should be used to initialize request.auth for unauthenticated requests.

Default: None

Test settings

The following settings control the behavior of APIRequestFactory and APIClient

TEST_REQUEST_DEFAULT_FORMAT

The default format that should be used when making test requests.

This should match up with the format of one of the renderer classes in the TEST_REQUEST_RENDERER_CLASSES setting.

Default: 'multipart'

TEST_REQUEST_RENDERER_CLASSES

The renderer classes that are supported when building test requests.

The format of any of these renderer classes may be used when constructing a test request, for example: client.post('/users', {'username': 'jamie'}, format='json')

Default:

(
 'rest_framework.renderers.MultiPartRenderer',
 'rest_framework.renderers.JSONRenderer'
)

Content type controls

URL_FORMAT_OVERRIDE

The name of a URL parameter that may be used to override the default content negotiation Accept header behavior, by using a format=… query parameter in the request URL.

For example: http://example.com/organizations/?format=csv

If the value of this setting is None then URL format overrides will be disabled.

Default: 'format'

FORMAT_SUFFIX_KWARG

The name of a parameter in the URL conf that may be used to provide a format suffix. This setting is applied when using format_suffix_patterns to include suffixed URL patterns.

For example: http://example.com/organizations.csv/

Default: 'format'

Date and time formatting

The following settings are used to control how date and time representations may be parsed and rendered.

DATETIME_FORMAT

A format string that should be used by default for rendering the output of DateTimeField serializer fields. If None, then DateTimeField serializer fields will return Python datetime objects, and the datetime encoding will be determined by the renderer.

May be any of None, 'iso-8601' or a Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] string.

Default: 'iso-8601'

DATETIME_INPUT_FORMATS

A list of format strings that should be used by default for parsing inputs to DateTimeField serializer fields.

May be a list including the string 'iso-8601' or Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] strings.

Default: ['iso-8601']

DATE_FORMAT

A format string that should be used by default for rendering the output of DateField serializer fields. If None, then DateField serializer fields will return Python date objects, and the date encoding will be determined by the renderer.

May be any of None, 'iso-8601' or a Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] string.

Default: 'iso-8601'

DATE_INPUT_FORMATS

A list of format strings that should be used by default for parsing inputs to DateField serializer fields.

May be a list including the string 'iso-8601' or Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] strings.

Default: ['iso-8601']

TIME_FORMAT

A format string that should be used by default for rendering the output of TimeField serializer fields. If None, then TimeField serializer fields will return Python time objects, and the time encoding will be determined by the renderer.

May be any of None, 'iso-8601' or a Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] string.

Default: 'iso-8601'

TIME_INPUT_FORMATS

A list of format strings that should be used by default for parsing inputs to TimeField serializer fields.

May be a list including the string 'iso-8601' or Python strftime format [http://docs.python.org/2/library/time.html#time.strftime] strings.

Default: ['iso-8601']

Encodings

UNICODE_JSON

When set to True, JSON responses will allow unicode characters in responses. For example:

{"unicode black star":"★"}

When set to False, JSON responses will escape non-ascii characters, like so:

{"unicode black star":"\u2605"}

Both styles conform to RFC 4627 [http://www.ietf.org/rfc/rfc4627.txt], and are syntactically valid JSON. The unicode style is preferred as being more user-friendly when inspecting API responses.

Default: True

COMPACT_JSON

When set to True, JSON responses will return compact representations, with no spacing after ':' and ',' characters. For example:

{"is_admin":false,"email":"jane@example"}

When set to False, JSON responses will return slightly more verbose representations, like so:

{"is_admin": false, "email": "jane@example"}

The default style is to return minified responses, in line with Heroku’s API design guidelines [https://github.com/interagent/http-api-design#keep-json-minified-in-all-responses].

Default: True

COERCE_DECIMAL_TO_STRING

When returning decimal objects in API representations that do not support a native decimal type, it is normally best to return the value as a string. This avoids the loss of precision that occurs with binary floating point implementations.

When set to True, the serializer DecimalField class will return strings instead of Decimal objects. When set to False, serializers will return Decimal objects, which the default JSON encoder will return as floats.

Default: True

View names and descriptions

The following settings are used to generate the view names and descriptions, as used in responses to OPTIONS requests, and as used in the browsable API.

VIEW_NAME_FUNCTION

A string representing the function that should be used when generating view names.

This should be a function with the following signature:

view_name(cls, suffix=None)

		cls: The view class. Typically the name function would inspect the name of the class when generating a descriptive name, by accessing cls.__name__.

		suffix: The optional suffix used when differentiating individual views in a viewset.

Default: 'rest_framework.views.get_view_name'

VIEW_DESCRIPTION_FUNCTION

A string representing the function that should be used when generating view descriptions.

This setting can be changed to support markup styles other than the default markdown. For example, you can use it to support rst markup in your view docstrings being output in the browsable API.

This should be a function with the following signature:

view_description(cls, html=False)

		cls: The view class. Typically the description function would inspect the docstring of the class when generating a description, by accessing cls.__doc__

		html: A boolean indicating if HTML output is required. True when used in the browsable API, and False when used in generating OPTIONS responses.

Default: 'rest_framework.views.get_view_description'

Miscellaneous settings

EXCEPTION_HANDLER

A string representing the function that should be used when returning a response for any given exception. If the function returns None, a 500 error will be raised.

This setting can be changed to support error responses other than the default {"detail": "Failure..."} responses. For example, you can use it to provide API responses like {"errors": [{"message": "Failure...", "code": ""} ...]}.

This should be a function with the following signature:

exception_handler(exc, context)

		exc: The exception.

Default: 'rest_framework.views.exception_handler'

NON_FIELD_ERRORS_KEY

A string representing the key that should be used for serializer errors that do not refer to a specific field, but are instead general errors.

Default: 'non_field_errors'

URL_FIELD_NAME

A string representing the key that should be used for the URL fields generated by HyperlinkedModelSerializer.

Default: 'url'

NUM_PROXIES

An integer of 0 or more, that may be used to specify the number of application proxies that the API runs behind. This allows throttling to more accurately identify client IP addresses. If set to None then less strict IP matching will be used by the throttle classes.

Default: None

 © Copyright .
 Created using Sphinx 1.3.1.

topics/writable-nested-serializers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

To save HTTP requests, it may be convenient to send related documents along with the request.

—

 JSON API specification for Ember Data [http://jsonapi.org/format/#url-based-json-api].

Writable nested serializers

Although flat data structures serve to properly delineate between the individual entities in your service, there are cases where it may be more appropriate or convenient to use nested data structures.

Nested data structures are easy enough to work with if they’re read-only - simply nest your serializer classes and you’re good to go. However, there are a few more subtleties to using writable nested serializers, due to the dependencies between the various model instances, and the need to save or delete multiple instances in a single action.

One-to-many data structures

Example of a read-only nested serializer. Nothing complex to worry about here.

class ToDoItemSerializer(serializers.ModelSerializer):
 class Meta:
 model = ToDoItem
 fields = ('text', 'is_completed')

class ToDoListSerializer(serializers.ModelSerializer):
 items = ToDoItemSerializer(many=True, read_only=True)

 class Meta:
 model = ToDoList
 fields = ('title', 'items')

Some example output from our serializer.

{
 'title': 'Leaving party preperations',
 'items': [
 {'text': 'Compile playlist', 'is_completed': True},
 {'text': 'Send invites', 'is_completed': False},
 {'text': 'Clean house', 'is_completed': False}
]
}

Let’s take a look at updating our nested one-to-many data structure.

Validation errors

Adding and removing items

Making PATCH requests

 © Copyright .
 Created using Sphinx 1.3.1.

topics/documenting-your-api.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Documenting your API

A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state.

—

 Roy Fielding, REST APIs must be hypertext driven [http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven]

There are a variety of approaches to API documentation. This document introduces a few of the various tools and options you might choose from. The approaches should not be considered exclusive - you may want to provide more than one documentation style for you API, such as a self describing API that also includes static documentation of the various API endpoints.

Endpoint documentation

The most common way to document Web APIs today is to produce documentation that lists the API endpoints verbatim, and describes the allowable operations on each. There are various tools that allow you to do this in an automated or semi-automated way.

Django REST Swagger

Marc Gibbons’ Django REST Swagger [https://github.com/marcgibbons/django-rest-swagger] integrates REST framework with the Swagger [https://developers.helloreverb.com/swagger/] API documentation tool. The package produces well presented API documentation, and includes interactive tools for testing API endpoints.

The package is fully documented, well supported, and comes highly recommended.

Django REST Swagger supports REST framework versions 2.3 and above.

[image: Screenshot - Django REST Swagger]

REST Framework Docs

The REST Framework Docs [https://github.com/marcgibbons/django-rest-framework-docs] package is an earlier project, also by Marc Gibbons, that offers clean, simple autogenerated documentation for your API.

[image: Screenshot - REST Framework Docs]

Apiary

There are various other online tools and services for providing API documentation. One notable service is Apiary [http://apiary.io/]. With Apiary, you describe your API using a simple markdown-like syntax. The generated documentation includes API interaction, a mock server for testing & prototyping, and various other tools.

[image: Screenshot - Apiary]

Self describing APIs

The browsable API that REST framework provides makes it possible for your API to be entirely self describing. The documentation for each API endpoint can be provided simply by visiting the URL in your browser.

[image: Screenshot - Self describing API]

Setting the title

The title that is used in the browsable API is generated from the view class name or function name. Any trailing View or ViewSet suffix is stripped, and the string is whitespace separated on uppercase/lowercase boundaries or underscores.

For example, the view UserListView, will be named User List when presented in the browsable API.

When working with viewsets, an appropriate suffix is appended to each generated view. For example, the view set UserViewSet will generate views named User List and User Instance.

Setting the description

The description in the browsable API is generated from the docstring of the view or viewset.

If the python markdown library is installed, then markdown syntax [http://daringfireball.net/projects/markdown/] may be used in the docstring, and will be converted to HTML in the browsable API. For example:

class AccountListView(views.APIView):
 """
 Returns a list of all **active** accounts in the system.

 For more details on how accounts are activated please [see here][ref].

 [ref]: http://example.com/activating-accounts
 """

Note that one constraint of using viewsets is that any documentation be used for all generated views, so for example, you cannot have differing documentation for the generated list view and detail view.

The OPTIONS method

REST framework APIs also support programmatically accessible descriptions, using the OPTIONS HTTP method. A view will respond to an OPTIONS request with metadata including the name, description, and the various media types it accepts and responds with.

When using the generic views, any OPTIONS requests will additionally respond with metadata regarding any POST or PUT actions available, describing which fields are on the serializer.

You can modify the response behavior to OPTIONS requests by overriding the metadata view method. For example:

def metadata(self, request):
 """
 Don't include the view description in OPTIONS responses.
 """
 data = super(ExampleView, self).metadata(request)
 data.pop('description')
 return data

The hypermedia approach

To be fully RESTful an API should present its available actions as hypermedia controls in the responses that it sends.

In this approach, rather than documenting the available API endpoints up front, the description instead concentrates on the media types that are used. The available actions that may be taken on any given URL are not strictly fixed, but are instead made available by the presence of link and form controls in the returned document.

To implement a hypermedia API you’ll need to decide on an appropriate media type for the API, and implement a custom renderer and parser for that media type. The REST, Hypermedia & HATEOAS section of the documentation includes pointers to background reading, as well as links to various hypermedia formats.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/html-and-forms.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

HTML & Forms

REST framework is suitable for returning both API style responses, and regular HTML pages. Additionally, serializers can used as HTML forms and rendered in templates.

Rendering HTML

In order to return HTML responses you’ll need to either TemplateHTMLRenderer, or StaticHTMLRenderer.

The TemplateHTMLRenderer class expects the response to contain a dictionary of context data, and renders an HTML page based on a template that must be specified either in the view or on the response.

The StaticHTMLRender class expects the response to contain a string of the pre-rendered HTML content.

Because static HTML pages typically have different behavior from API responses you’ll probably need to write any HTML views explicitly, rather than relying on the built-in generic views.

Here’s an example of a view that returns a list of “Profile” instances, rendered in an HTML template:

views.py:

from my_project.example.models import Profile
from rest_framework.renderers import TemplateHTMLRenderer
from rest_framework.views import APIView

class ProfileList(APIView):
 renderer_classes = [TemplateHTMLRenderer]
 template_name = 'profile_list.html'

 def get(self, request):
 queryset = Profile.objects.all()
 return Response({'profiles': queryset})

profile_list.html:

<html><body>
<h1>Profiles</h1>

 {% for profile in profiles %}
 {{ profile.name }}
 {% endfor %}

</body></html>

Rendering Forms

Serializers may be rendered as forms by using the render_form template tag, and including the serializer instance as context to the template.

The following view demonstrates an example of using a serializer in a template for viewing and updating a model instance:

views.py:

from django.shortcuts import get_object_or_404
from my_project.example.models import Profile
from rest_framework.renderers import TemplateHTMLRenderer
from rest_framework.views import APIView

class ProfileDetail(APIView):
 renderer_classes = [TemplateHTMLRenderer]
 template_name = 'profile_detail.html'

 def get(self, request, pk):
 profile = get_object_or_404(Profile, pk=pk)
 serializer = ProfileSerializer(profile)
 return Response({'serializer': serializer, 'profile': profile})

 def post(self, request, pk):
 profile = get_object_or_404(Profile, pk=pk)
 serializer = ProfileSerializer(profile)
 if not serializer.is_valid():
 return Response({'serializer': serializer, 'profile': profile})
 return redirect('profile-list')

profile_detail.html:

{% load rest_framework %}

<html><body>

<h1>Profile - {{ profile.name }}</h1>

<form action="{% url 'profile-detail' pk=profile.pk '%}" method="POST">
 {% csrf_token %}
 {% render_form serializer %}
 <input type="submit" value="Save">
</form>

</body></html>

Using template packs

The render_form tag takes an optional template_pack argument, that specifies which template directory should be used for rendering the form and form fields.

REST framework includes three built-in template packs, all based on Bootstrap 3. The built-in styles are horizontal, vertical, and inline. The default style is horizontal. To use any of these template packs you’ll want to also include the Bootstrap 3 CSS.

The following HTML will link to a CDN hosted version of the Bootstrap 3 CSS:

<head>
 …
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
</head>

Third party packages may include alternate template packs, by bundling a template directory containing the necessary form and field templates.

Let’s take a look at how to render each of the three available template packs. For these examples we’ll use a single serializer class to present a “Login” form.

class LoginSerializer(serializers.Serializer):
 email = serializers.EmailField(
 max_length=100,
 style={'placeholder': 'Email'}
)
 password = serializers.CharField(
 max_length=100,
 style={'input_type': 'password', 'placeholder': 'Password'}
)
 remember_me = serializers.BooleanField()

rest_framework/vertical

Presents form labels above their corresponding control inputs, using the standard Bootstrap layout.

This is the default template pack.

{% load rest_framework %}

...

<form action="{% url 'login' %}" method="post" novalidate>
 {% csrf_token %}
 {% render_form serializer template_pack='rest_framework/vertical' %}
 <button type="submit" class="btn btn-default">Sign in</button>
</form>

[image: Vertical form example]

rest_framework/horizontal

Presents labels and controls alongside each other, using a 2/10 column split.

This is the form style used in the browsable API and admin renderers.

{% load rest_framework %}

...

<form class="form-horizontal" action="{% url 'login' %}" method="post" novalidate>
 {% csrf_token %}
 {% render_form serializer %}
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">
 <button type="submit" class="btn btn-default">Sign in</button>
 </div>
 </div>
</form>

[image: Horizontal form example]

rest_framework/inline

A compact form style that presents all the controls inline.

{% load rest_framework %}

...

<form class="form-inline" action="{% url 'login' %}" method="post" novalidate>
 {% csrf_token %}
 {% render_form serializer template_pack='rest_framework/inline' %}
 <button type="submit" class="btn btn-default">Sign in</button>
</form>

[image: Inline form example]

Field styles

Serializer fields can have their rendering style customized by using the style keyword argument. This argument is a dictionary of options that control the template and layout used.

The most common way to customize the field style is to use the base_template style keyword argument to select which template in the template pack should be use.

For example, to render a CharField as an HTML textarea rather than the default HTML input, you would use something like this:

details = serializers.CharField(
 max_length=1000,
 style={'base_template': 'textarea.html'}
)

If you instead want a field to be rendered using a custom template that is not part of an included template pack, you can instead use the template style option, to fully specify a template name:

details = serializers.CharField(
 max_length=1000,
 style={'template': 'my-field-templates/custom-input.html'}
)

Field templates can also use additional style properties, depending on their type. For example, the textarea.html template also accepts a rows property that can be used to affect the sizing of the control.

details = serializers.CharField(
 max_length=1000,
 style={'base_template': 'textarea.html', 'rows': 10}
)

The complete list of base_template options and their associated style options is listed below.

base_template | Valid field types | Additional style options—-|—-|—-
input.html | Any string, numeric or date/time field | input_type, placeholder, hide_label
textarea.html | CharField | rows, placeholder, hide_label
select.html | ChoiceField or relational field types | hide_label
radio.html | ChoiceField or relational field types | inline, hide_label
select_multiple.html | MultipleChoiceField or relational fields with many=True | hide_label
checkbox_multiple.html | MultipleChoiceField or relational fields with many=True | inline, hide_label
checkbox.html | BooleanField | hide_label
fieldset.html | Nested serializer | hide_label
list_fieldset.html | ListField or nested serializer with many=True | hide_label

 © Copyright .
 Created using Sphinx 1.3.1.

topics/release-notes.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Release Notes

Release Early, Release Often

—

 Eric S. Raymond, The Cathedral and the Bazaar [http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html].

Versioning

Minor version numbers (0.0.x) are used for changes that are API compatible. You should be able to upgrade between minor point releases without any other code changes.

Medium version numbers (0.x.0) may include API changes, in line with the deprecation policy. You should read the release notes carefully before upgrading between medium point releases.

Major version numbers (x.0.0) are reserved for substantial project milestones.

Deprecation policy

REST framework releases follow a formal deprecation policy, which is in line with Django’s deprecation policy [https://docs.djangoproject.com/en/dev/internals/release-process/#internal-release-deprecation-policy].

The timeline for deprecation of a feature present in version 1.0 would work as follows:

		Version 1.1 would remain fully backwards compatible with 1.0, but would raise PendingDeprecationWarning warnings if you use the feature that are due to be deprecated. These warnings are silent by default, but can be explicitly enabled when you’re ready to start migrating any required changes. For example if you start running your tests using python -Wd manage.py test, you’ll be warned of any API changes you need to make.

		Version 1.2 would escalate these warnings to DeprecationWarning, which is loud by default.

		Version 1.3 would remove the deprecated bits of API entirely.

Note that in line with Django’s policy, any parts of the framework not mentioned in the documentation should generally be considered private API, and may be subject to change.

Upgrading

To upgrade Django REST framework to the latest version, use pip:

pip install -U djangorestframework

You can determine your currently installed version using pip freeze:

pip freeze | grep djangorestframework

3.3.x series

3.3.0

Date: 28th October 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.3.0+Release%22].

		HTML controls for filters. ([#3315][gh3315])

		Forms API. ([#3475][gh3475])

		AJAX browsable API. ([#3410][gh3410])

		Added JSONField. ([#3454][gh3454])

		Correctly map to_field when creating ModelSerializer relational fields. ([#3526][gh3526])

		Include keyword arguments when mapping FilePathField to a serializer field. ([#3536][gh3536])

		Map appropriate model error_messages on ModelSerializer uniqueness constraints. ([#3435][gh3435])

		Include max_length constraint for ModelSerializer fields mapped from TextField. ([#3509][gh3509])

		Added support for Django 1.9. ([#3450][gh3450], [#3525][gh3525])

		Removed support for Django 1.5 & 1.6. ([#3421][gh3421], [#3429][gh3429])

		Removed ‘south’ migrations. ([#3495][gh3495])

3.2.x series

3.2.5

Date: 27th October 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.5+Release%22].

		Escape username in optional logout tag. ([#3550][gh3550])

3.2.4

Date: 21th September 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.4+Release%22].

		Don’t error on missing ViewSet.search_fields attribute. ([#3324][gh3324], [#3323][gh3323])

		Fix allow_empty not working on serializers with many=True. ([#3361][gh3361], [#3364][gh3364])

		Let DurationField accepts integers. ([#3359][gh3359])

		Multi-level dictionaries not supported in multipart requests. ([#3314][gh3314])

		Fix ListField truncation on HTTP PATCH ([#3415][gh3415], [#2761][gh2761])

3.2.3

Date: 24th August 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.3+Release%22].

		Added html_cutoff and html_cutoff_text for limiting select dropdowns. ([#3313][gh3313])

		Added regex style to SearchFilter. ([#3316][gh3316])

		Resolve issues with setting blank HTML fields. ([#3318][gh3318]) ([#3321][gh3321])

		Correctly display existing ‘select multiple’ values in browsable API forms. ([#3290][gh3290])

		Resolve duplicated validation message for IPAddressField. ([#3249[gh3249]) ([#3250][gh3250])

		Fix to ensure admin renderer continues to work when pagination is disabled. ([#3275][gh3275])

		Resolve error with LimitOffsetPagination when count=0, offset=0. ([#3303][gh3303])

3.2.2

Date: 13th August 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.2+Release%22].

		Add display_value() method for use when displaying relational field select inputs. ([#3254][gh3254])

		Fix issue with BooleanField checkboxes incorrectly displaying as checked. ([#3258][gh3258])

		Ensure empty checkboxes properly set BooleanField to False in all cases. ([#2776][gh2776])

		Allow WSGIRequest.FILES property without raising incorrect deprecated error. ([#3261][gh3261])

		Resolve issue with rendering nested serializers in forms. ([#3260][gh3260])

		Raise an error if user accidentally pass a serializer instance to a response, rather than data. ([#3241][gh3241])

3.2.1

Date: 7th August 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.1+Release%22].

		Fix for relational select widgets rendering without any choices. ([#3237][gh3237])

		Fix for 1, 0 rendering as true, false in the admin interface. [#3227][gh3227])

		Fix for ListFields with single value in HTML form input. ([#3238][gh3238])

		Allow request.FILES for compat with Django’s HTTPRequest class. ([#3239][gh3239])

3.2.0

Date: 6th August 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.2.0+Release%22].

		Add AdminRenderer. ([#2926][gh2926])

		Add FilePathField. ([#1854][gh1854])

		Add allow_empty to ListField. ([#2250][gh2250])

		Support django-guardian 1.3. ([#3165][gh3165])

		Support grouped choices. ([#3225][gh3225])

		Support error forms in browsable API. ([#3024][gh3024])

		Allow permission classes to customize the error message. ([#2539][gh2539])

		Support source=<method> on hyperlinked fields. ([#2690][gh2690])

		ListField(allow_null=True) now allows null as the list value, not null items in the list. ([#2766][gh2766])

		ManyToMany() maps to allow_empty=False, ManyToMany(blank=True) maps to allow_empty=True. ([#2804][gh2804])

		Support custom serialization styles for primary key fields. ([#2789][gh2789])

		OPTIONS requests support nested representations. ([#2915][gh2915])

		Set view.action == "metadata" for viewsets with OPTIONS requests. ([#3115][gh3115])

		Support allow_blank on UUIDField. ([#3130][gh#3130])

		Do not display view docstrings with 401 or 403 response codes. ([#3216][gh3216])

		Resolve Django 1.8 deprecation warnings. ([#2886][gh2886])

		Fix for DecimalField validation. ([#3139][gh3139])

		Fix behavior of allow_blank=False when used with trim_whitespace=True. ([#2712][gh2712])

		Fix issue with some field combinations incorrectly mapping to an invalid allow_blank argument. ([#3011][gh3011])

		Fix for output representations with prefetches and modified querysets. ([#2704][gh2704], [#2727][gh2727])

		Fix assertion error when CursorPagination is provided with certains invalid query parameters. (#2920)[gh2920].

		Fix UnicodeDecodeError when invalid characters included in header with TokenAuthentication. ([#2928][gh2928])

		Fix transaction rollbacks with @non_atomic_requests decorator. ([#3016][gh3016])

		Fix duplicate results issue with Oracle databases using SearchFilter. ([#2935][gh2935])

		Fix checkbox alignment and rendering in browsable API forms. ([#2783][gh2783])

		Fix for unsaved file objects which should use "url": null in the representation. ([#2759][gh2759])

		Fix field value rendering in browsable API. ([#2416][gh2416])

		Fix HStoreField to include allow_blank=True in DictField mapping. ([#2659][gh2659])

		Numerous other cleanups, improvements to error messaging, private API & minor fixes.

3.1.x series

3.1.3

Date: 4th June 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.1.3+Release%22].

		Add DurationField. ([#2481][gh2481], [#2989][gh2989])

		Add format argument to UUIDField. ([#2788][gh2788], [#3000][gh3000])

		MultipleChoiceField empties incorrectly on a partial update using multipart/form-data ([#2993][gh2993], [#2894][gh2894])

		Fix a bug in options related to read-only RelatedField. ([#2981][gh2981], [#2811][gh2811])

		Fix nested serializers with unique_together relations. ([#2975][gh2975])

		Allow unexpected values for ChoiceField/MultipleChoiceField representations. ([#2839][gh2839], [#2940][gh2940])

		Rollback the transaction on error if ATOMIC_REQUESTS is set. ([#2887][gh2887], [#2034][gh2034])

		Set the action on a view when override_method regardless of its None-ness. ([#2933][gh2933])

		DecimalField accepts 2E+2 as 200 and validates decimal place correctly. ([#2948][gh2948], [#2947][gh2947])

		Support basic authentication with custom UserModel that change username. ([#2952][gh2952])

		IPAddressField improvements. ([#2747][gh2747], [#2618][gh2618], [#3008][gh3008])

		Improve DecimalField for easier subclassing. ([#2695][gh2695])

3.1.2

Date: 13rd May 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.1.2+Release%22].

		DateField.to_representation can handle str and empty values. ([#2656][gh2656], [#2687][gh2687], [#2869][gh2869])

		Use default reason phrases from HTTP standard. ([#2764][gh2764], [#2763][gh2763])

		Raise error when ModelSerializer used with abstract model. ([#2757][gh2757], [#2630][gh2630])

		Handle reversal of non-API view_name in HyperLinkedRelatedField ([#2724][gh2724], [#2711][gh2711])

		Dont require pk strictly for related fields. ([#2745][gh2745], [#2754][gh2754])

		Metadata detects null boolean field type. ([#2762][gh2762])

		Proper handling of depth in nested serializers. ([#2798][gh2798])

		Display viewset without paginator. ([#2807][gh2807])

		Don’t check for deprecated .model attribute in permissions ([#2818][gh2818])

		Restrict integer field to integers and strings. ([#2835][gh2835], [#2836][gh2836])

		Improve IntegerField to use compiled decimal regex. ([#2853][gh2853])

		Prevent empty queryset to raise AssertionError. ([#2862][gh2862])

		DjangoModelPermissions rely on get_queryset. ([#2863][gh2863])

		Check AcceptHeaderVersioning with content negotiation in place. ([#2868][gh2868])

		Allow DjangoObjectPermissions to use views that define get_queryset. ([#2905][gh2905])

3.1.1

Date: 23rd March 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.1.1+Release%22].

		Security fix: Escape tab switching cookie name in browsable API.

		Display input forms in browsable API if serializer_class is used, even when get_serializer method does not exist on the view. ([#2743][gh2743])

		Use a password input for the AuthTokenSerializer. ([#2741][gh2741])

		Fix missing anchor closing tag after next button. ([#2691][gh2691])

		Fix lookup_url_kwarg handling in viewsets. ([#2685][gh2685], [#2591][gh2591])

		Fix problem with importing rest_framework.views in apps.py ([#2678][gh2678])

		LimitOffsetPagination raises TypeError if PAGE_SIZE not set ([#2667][gh2667], [#2700][gh2700])

		German translation for min_value field error message references max_value. ([#2645][gh2645])

		Remove MergeDict. ([#2640][gh2640])

		Support serializing unsaved models with related fields. ([#2637][gh2637], [#2641][gh2641])

		Allow blank/null on radio.html choices. ([#2631][gh2631])

3.1.0

Date: 5th March 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.1.0+Release%22].

For full details see the 3.1 release announcement.

3.0.x series

3.0.5

Date: 10th February 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.0.5+Release%22].

		Fix a bug where _closable_objects breaks pickling. ([#1850][gh1850], [#2492][gh2492])

		Allow non-standard User models with Throttling. ([#2524][gh2524])

		Support custom User.db_table in TokenAuthentication migration. ([#2479][gh2479])

		Fix misleading AttributeError tracebacks on Request objects. ([#2530][gh2530], [#2108][gh2108])

		ManyRelatedField.get_value clearing field on partial update. ([#2475][gh2475])

		Removed ‘.model’ shortcut from code. ([#2486][gh2486])

		Fix detail_route and list_route mutable argument. ([#2518][gh2518])

		Prefetching the user object when getting the token in TokenAuthentication. ([#2519][gh2519])

3.0.4

Date: 28th January 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.0.4+Release%22].

		Django 1.8a1 support. ([#2425][gh2425], [#2446][gh2446], [#2441][gh2441])

		Add DictField and support Django 1.8 HStoreField. ([#2451][gh2451], [#2106][gh2106])

		Add UUIDField and support Django 1.8 UUIDField. ([#2448][gh2448], [#2433][gh2433], [#2432][gh2432])

		BaseRenderer.render now raises NotImplementedError. ([#2434][gh2434])

		Fix timedelta JSON serialization on Python 2.6. ([#2430][gh2430])

		ResultDict and ResultList now appear as standard dict/list. ([#2421][gh2421])

		Fix visible HiddenField in the HTML form of the web browsable API page. ([#2410][gh2410])

		Use OrderedDict for RelatedField.choices. ([#2408][gh2408])

		Fix ident format when using HTTP_X_FORWARDED_FOR. ([#2401][gh2401])

		Fix invalid key with memcached while using throttling. ([#2400][gh2400])

		Fix FileUploadParser with version 3.x. ([#2399][gh2399])

		Fix the serializer inheritance. ([#2388][gh2388])

		Fix caching issues with ReturnDict. ([#2360][gh2360])

3.0.3

Date: 8th January 2015 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.0.3+Release%22].

		Fix MinValueValidator on models.DateField. ([#2369][gh2369])

		Fix serializer missing context when pagination is used. ([#2355][gh2355])

		Namespaced router URLs are now supported by the DefaultRouter. ([#2351][gh2351])

		required=False allows omission of value for output. ([#2342][gh2342])

		Use textarea input for models.TextField. ([#2340][gh2340])

		Use custom ListSerializer for pagination if required. ([#2331][gh2331], [#2327][gh2327])

		Better behavior with null and ‘’ for blank HTML fields. ([#2330][gh2330])

		Ensure fields in exclude are model fields. ([#2319][gh2319])

		Fix IntegerField and max_length argument incompatibility. ([#2317][gh2317])

		Fix the YAML encoder for 3.0 serializers. ([#2315][gh2315], [#2283][gh2283])

		Fix the behavior of empty HTML fields. ([#2311][gh2311], [#1101][gh1101])

		Fix Metaclass attribute depth ignoring fields attribute. ([#2287][gh2287])

		Fix format_suffix_patterns to work with Django’s i18n_patterns. ([#2278][gh2278])

		Ability to customize router URLs for custom actions, using url_path. ([#2010][gh2010])

		Don’t install Django REST Framework as egg. ([#2386][gh2386])

3.0.2

Date: 17th December 2014 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.0.2+Release%22].

		Ensure request.user is made available to response middleware. ([#2155][gh2155])

		Client.logout() also cancels any existing force_authenticate. ([#2218][gh2218], [#2259][gh2259])

		Extra assertions and better checks to preventing incorrect serializer API use. ([#2228][gh2228], [#2234][gh2234], [#2262][gh2262], [#2263][gh2263], [#2266][gh2266], [#2267][gh2267], [#2289][gh2289], [#2291][gh2291])

		Fixed min_length message for CharField. ([#2255][gh2255])

		Fix UnicodeDecodeError, which can occur on serializer repr. ([#2270][gh2270], [#2279][gh2279])

		Fix empty HTML values when a default is provided. ([#2280][gh2280], [#2294][gh2294])

		Fix SlugRelatedField raising UnicodeEncodeError when used as a multiple choice input. ([#2290][gh2290])

3.0.1

Date: 11th December 2014 [https://github.com/tomchristie/django-rest-framework/issues?q=milestone%3A%223.0.1+Release%22].

		More helpful error message when the default Serializer create() fails. ([#2013][gh2013])

		Raise error when attempting to save serializer if data is not valid. ([#2098][gh2098])

		Fix FileUploadParser breaks with empty file names and multiple upload handlers. ([#2109][gh2109])

		Improve BindingDict to support standard dict-functions. ([#2135][gh2135], [#2163][gh2163])

		Add validate() to ListSerializer. ([#2168][gh2168], [#2225][gh2225], [#2232][gh2232])

		Fix JSONP renderer failing to escape some characters. ([#2169][gh2169], [#2195][gh2195])

		Add missing default style for FileField. ([#2172][gh2172])

		Actions are required when calling ViewSet.as_view(). ([#2175][gh2175])

		Add allow_blank to ChoiceField. ([#2184][gh2184], [#2239][gh2239])

		Cosmetic fixes in the HTML renderer. ([#2187][gh2187])

		Raise error if fields on serializer is not a list of strings. ([#2193][gh2193], [#2213][gh2213])

		Improve checks for nested creates and updates. ([#2194][gh2194], [#2196][gh2196])

		validated_attrs argument renamed to validated_data in Serializer create()/update(). ([#2197][gh2197])

		Remove deprecated code to reflect the dropped Django versions. ([#2200][gh2200])

		Better serializer errors for nested writes. ([#2202][gh2202], [#2215][gh2215])

		Fix pagination and custom permissions incompatibility. ([#2205][gh2205])

		Raise error if fields on serializer is not a list of strings. ([#2213][gh2213])

		Add missing translation markers for relational fields. ([#2231][gh2231])

		Improve field lookup behavior for dicts/mappings. ([#2244][gh2244], [#2243][gh2243])

		Optimized hyperlinked PK. ([#2242][gh2242])

3.0.0

Date: 1st December 2014

For full details see the 3.0 release announcement.

For older release notes, please see the version 2.x documentation [https://github.com/tomchristie/django-rest-framework/blob/version-2.4.x/docs/topics/release-notes.md].

[gh2013]: https://github.com/tomchristie/django-rest-framework/issues/2013
[gh2098]: https://github.com/tomchristie/django-rest-framework/issues/2098
[gh2109]: https://github.com/tomchristie/django-rest-framework/issues/2109
[gh2135]: https://github.com/tomchristie/django-rest-framework/issues/2135
[gh2163]: https://github.com/tomchristie/django-rest-framework/issues/2163
[gh2168]: https://github.com/tomchristie/django-rest-framework/issues/2168
[gh2169]: https://github.com/tomchristie/django-rest-framework/issues/2169
[gh2172]: https://github.com/tomchristie/django-rest-framework/issues/2172
[gh2175]: https://github.com/tomchristie/django-rest-framework/issues/2175
[gh2184]: https://github.com/tomchristie/django-rest-framework/issues/2184
[gh2187]: https://github.com/tomchristie/django-rest-framework/issues/2187
[gh2193]: https://github.com/tomchristie/django-rest-framework/issues/2193
[gh2194]: https://github.com/tomchristie/django-rest-framework/issues/2194
[gh2195]: https://github.com/tomchristie/django-rest-framework/issues/2195
[gh2196]: https://github.com/tomchristie/django-rest-framework/issues/2196
[gh2197]: https://github.com/tomchristie/django-rest-framework/issues/2197
[gh2200]: https://github.com/tomchristie/django-rest-framework/issues/2200
[gh2202]: https://github.com/tomchristie/django-rest-framework/issues/2202
[gh2205]: https://github.com/tomchristie/django-rest-framework/issues/2205
[gh2213]: https://github.com/tomchristie/django-rest-framework/issues/2213
[gh2213]: https://github.com/tomchristie/django-rest-framework/issues/2213
[gh2215]: https://github.com/tomchristie/django-rest-framework/issues/2215
[gh2225]: https://github.com/tomchristie/django-rest-framework/issues/2225
[gh2231]: https://github.com/tomchristie/django-rest-framework/issues/2231
[gh2232]: https://github.com/tomchristie/django-rest-framework/issues/2232
[gh2239]: https://github.com/tomchristie/django-rest-framework/issues/2239
[gh2242]: https://github.com/tomchristie/django-rest-framework/issues/2242
[gh2243]: https://github.com/tomchristie/django-rest-framework/issues/2243
[gh2244]: https://github.com/tomchristie/django-rest-framework/issues/2244

[gh2155]: https://github.com/tomchristie/django-rest-framework/issues/2155
[gh2218]: https://github.com/tomchristie/django-rest-framework/issues/2218
[gh2228]: https://github.com/tomchristie/django-rest-framework/issues/2228
[gh2234]: https://github.com/tomchristie/django-rest-framework/issues/2234
[gh2255]: https://github.com/tomchristie/django-rest-framework/issues/2255
[gh2259]: https://github.com/tomchristie/django-rest-framework/issues/2259
[gh2262]: https://github.com/tomchristie/django-rest-framework/issues/2262
[gh2263]: https://github.com/tomchristie/django-rest-framework/issues/2263
[gh2266]: https://github.com/tomchristie/django-rest-framework/issues/2266
[gh2267]: https://github.com/tomchristie/django-rest-framework/issues/2267
[gh2270]: https://github.com/tomchristie/django-rest-framework/issues/2270
[gh2279]: https://github.com/tomchristie/django-rest-framework/issues/2279
[gh2280]: https://github.com/tomchristie/django-rest-framework/issues/2280
[gh2289]: https://github.com/tomchristie/django-rest-framework/issues/2289
[gh2290]: https://github.com/tomchristie/django-rest-framework/issues/2290
[gh2291]: https://github.com/tomchristie/django-rest-framework/issues/2291
[gh2294]: https://github.com/tomchristie/django-rest-framework/issues/2294

[gh1101]: https://github.com/tomchristie/django-rest-framework/issues/1101
[gh2010]: https://github.com/tomchristie/django-rest-framework/issues/2010
[gh2278]: https://github.com/tomchristie/django-rest-framework/issues/2278
[gh2283]: https://github.com/tomchristie/django-rest-framework/issues/2283
[gh2287]: https://github.com/tomchristie/django-rest-framework/issues/2287
[gh2311]: https://github.com/tomchristie/django-rest-framework/issues/2311
[gh2315]: https://github.com/tomchristie/django-rest-framework/issues/2315
[gh2317]: https://github.com/tomchristie/django-rest-framework/issues/2317
[gh2319]: https://github.com/tomchristie/django-rest-framework/issues/2319
[gh2327]: https://github.com/tomchristie/django-rest-framework/issues/2327
[gh2330]: https://github.com/tomchristie/django-rest-framework/issues/2330
[gh2331]: https://github.com/tomchristie/django-rest-framework/issues/2331
[gh2340]: https://github.com/tomchristie/django-rest-framework/issues/2340
[gh2342]: https://github.com/tomchristie/django-rest-framework/issues/2342
[gh2351]: https://github.com/tomchristie/django-rest-framework/issues/2351
[gh2355]: https://github.com/tomchristie/django-rest-framework/issues/2355
[gh2369]: https://github.com/tomchristie/django-rest-framework/issues/2369
[gh2386]: https://github.com/tomchristie/django-rest-framework/issues/2386

[gh2425]: https://github.com/tomchristie/django-rest-framework/issues/2425
[gh2446]: https://github.com/tomchristie/django-rest-framework/issues/2446
[gh2441]: https://github.com/tomchristie/django-rest-framework/issues/2441
[gh2451]: https://github.com/tomchristie/django-rest-framework/issues/2451
[gh2106]: https://github.com/tomchristie/django-rest-framework/issues/2106
[gh2448]: https://github.com/tomchristie/django-rest-framework/issues/2448
[gh2433]: https://github.com/tomchristie/django-rest-framework/issues/2433
[gh2432]: https://github.com/tomchristie/django-rest-framework/issues/2432
[gh2434]: https://github.com/tomchristie/django-rest-framework/issues/2434
[gh2430]: https://github.com/tomchristie/django-rest-framework/issues/2430
[gh2421]: https://github.com/tomchristie/django-rest-framework/issues/2421
[gh2410]: https://github.com/tomchristie/django-rest-framework/issues/2410
[gh2408]: https://github.com/tomchristie/django-rest-framework/issues/2408
[gh2401]: https://github.com/tomchristie/django-rest-framework/issues/2401
[gh2400]: https://github.com/tomchristie/django-rest-framework/issues/2400
[gh2399]: https://github.com/tomchristie/django-rest-framework/issues/2399
[gh2388]: https://github.com/tomchristie/django-rest-framework/issues/2388
[gh2360]: https://github.com/tomchristie/django-rest-framework/issues/2360

[gh1850]: https://github.com/tomchristie/django-rest-framework/issues/1850
[gh2108]: https://github.com/tomchristie/django-rest-framework/issues/2108
[gh2475]: https://github.com/tomchristie/django-rest-framework/issues/2475
[gh2479]: https://github.com/tomchristie/django-rest-framework/issues/2479
[gh2486]: https://github.com/tomchristie/django-rest-framework/issues/2486
[gh2492]: https://github.com/tomchristie/django-rest-framework/issues/2492
[gh2518]: https://github.com/tomchristie/django-rest-framework/issues/2518
[gh2519]: https://github.com/tomchristie/django-rest-framework/issues/2519
[gh2524]: https://github.com/tomchristie/django-rest-framework/issues/2524
[gh2530]: https://github.com/tomchristie/django-rest-framework/issues/2530

[gh2691]: https://github.com/tomchristie/django-rest-framework/issues/2691
[gh2685]: https://github.com/tomchristie/django-rest-framework/issues/2685
[gh2591]: https://github.com/tomchristie/django-rest-framework/issues/2591
[gh2678]: https://github.com/tomchristie/django-rest-framework/issues/2678
[gh2667]: https://github.com/tomchristie/django-rest-framework/issues/2667
[gh2700]: https://github.com/tomchristie/django-rest-framework/issues/2700
[gh2645]: https://github.com/tomchristie/django-rest-framework/issues/2645
[gh2640]: https://github.com/tomchristie/django-rest-framework/issues/2640
[gh2637]: https://github.com/tomchristie/django-rest-framework/issues/2637
[gh2641]: https://github.com/tomchristie/django-rest-framework/issues/2641
[gh2631]: https://github.com/tomchristie/django-rest-framework/issues/2631
[gh2741]: https://github.com/tomchristie/django-rest-framework/issues/2641
[gh2743]: https://github.com/tomchristie/django-rest-framework/issues/2643

[gh2656]: https://github.com/tomchristie/django-rest-framework/issues/2656
[gh2687]: https://github.com/tomchristie/django-rest-framework/issues/2687
[gh2869]: https://github.com/tomchristie/django-rest-framework/issues/2869
[gh2764]: https://github.com/tomchristie/django-rest-framework/issues/2764
[gh2763]: https://github.com/tomchristie/django-rest-framework/issues/2763
[gh2757]: https://github.com/tomchristie/django-rest-framework/issues/2757
[gh2630]: https://github.com/tomchristie/django-rest-framework/issues/2630
[gh2724]: https://github.com/tomchristie/django-rest-framework/issues/2724
[gh2711]: https://github.com/tomchristie/django-rest-framework/issues/2711
[gh2745]: https://github.com/tomchristie/django-rest-framework/issues/2745
[gh2754]: https://github.com/tomchristie/django-rest-framework/issues/2754
[gh2762]: https://github.com/tomchristie/django-rest-framework/issues/2762
[gh2798]: https://github.com/tomchristie/django-rest-framework/issues/2798
[gh2807]: https://github.com/tomchristie/django-rest-framework/issues/2807
[gh2818]: https://github.com/tomchristie/django-rest-framework/issues/2818
[gh2835]: https://github.com/tomchristie/django-rest-framework/issues/2835
[gh2836]: https://github.com/tomchristie/django-rest-framework/issues/2836
[gh2853]: https://github.com/tomchristie/django-rest-framework/issues/2853
[gh2862]: https://github.com/tomchristie/django-rest-framework/issues/2862
[gh2863]: https://github.com/tomchristie/django-rest-framework/issues/2863
[gh2868]: https://github.com/tomchristie/django-rest-framework/issues/2868
[gh2905]: https://github.com/tomchristie/django-rest-framework/issues/2905

[gh2481]: https://github.com/tomchristie/django-rest-framework/issues/2481
[gh2989]: https://github.com/tomchristie/django-rest-framework/issues/2989
[gh2788]: https://github.com/tomchristie/django-rest-framework/issues/2788
[gh3000]: https://github.com/tomchristie/django-rest-framework/issues/3000
[gh2993]: https://github.com/tomchristie/django-rest-framework/issues/2993
[gh2894]: https://github.com/tomchristie/django-rest-framework/issues/2894
[gh2981]: https://github.com/tomchristie/django-rest-framework/issues/2981
[gh2811]: https://github.com/tomchristie/django-rest-framework/issues/2811
[gh2975]: https://github.com/tomchristie/django-rest-framework/issues/2975
[gh2839]: https://github.com/tomchristie/django-rest-framework/issues/2839
[gh2940]: https://github.com/tomchristie/django-rest-framework/issues/2940
[gh2887]: https://github.com/tomchristie/django-rest-framework/issues/2887
[gh2034]: https://github.com/tomchristie/django-rest-framework/issues/2034
[gh2933]: https://github.com/tomchristie/django-rest-framework/issues/2933
[gh2948]: https://github.com/tomchristie/django-rest-framework/issues/2948
[gh2947]: https://github.com/tomchristie/django-rest-framework/issues/2947
[gh2952]: https://github.com/tomchristie/django-rest-framework/issues/2952
[gh2747]: https://github.com/tomchristie/django-rest-framework/issues/2747
[gh2618]: https://github.com/tomchristie/django-rest-framework/issues/2618
[gh3008]: https://github.com/tomchristie/django-rest-framework/issues/3008
[gh2695]: https://github.com/tomchristie/django-rest-framework/issues/2695
[gh1854]: https://github.com/tomchristie/django-rest-framework/issues/1854
[gh2250]: https://github.com/tomchristie/django-rest-framework/issues/2250
[gh2416]: https://github.com/tomchristie/django-rest-framework/issues/2416
[gh2539]: https://github.com/tomchristie/django-rest-framework/issues/2539
[gh2659]: https://github.com/tomchristie/django-rest-framework/issues/2659
[gh2690]: https://github.com/tomchristie/django-rest-framework/issues/2690
[gh2704]: https://github.com/tomchristie/django-rest-framework/issues/2704
[gh2712]: https://github.com/tomchristie/django-rest-framework/issues/2712
[gh2727]: https://github.com/tomchristie/django-rest-framework/issues/2727
[gh2759]: https://github.com/tomchristie/django-rest-framework/issues/2759
[gh2766]: https://github.com/tomchristie/django-rest-framework/issues/2766
[gh2783]: https://github.com/tomchristie/django-rest-framework/issues/2783
[gh2789]: https://github.com/tomchristie/django-rest-framework/issues/2789
[gh2804]: https://github.com/tomchristie/django-rest-framework/issues/2804
[gh2886]: https://github.com/tomchristie/django-rest-framework/issues/2886
[gh2915]: https://github.com/tomchristie/django-rest-framework/issues/2915
[gh2920]: https://github.com/tomchristie/django-rest-framework/issues/2920
[gh2926]: https://github.com/tomchristie/django-rest-framework/issues/2926
[gh2928]: https://github.com/tomchristie/django-rest-framework/issues/2928
[gh2935]: https://github.com/tomchristie/django-rest-framework/issues/2935
[gh3011]: https://github.com/tomchristie/django-rest-framework/issues/3011
[gh3016]: https://github.com/tomchristie/django-rest-framework/issues/3016
[gh3024]: https://github.com/tomchristie/django-rest-framework/issues/3024
[gh3115]: https://github.com/tomchristie/django-rest-framework/issues/3115
[gh3139]: https://github.com/tomchristie/django-rest-framework/issues/3139
[gh3165]: https://github.com/tomchristie/django-rest-framework/issues/3165
[gh3216]: https://github.com/tomchristie/django-rest-framework/issues/3216
[gh3225]: https://github.com/tomchristie/django-rest-framework/issues/3225
[gh3237]: https://github.com/tomchristie/django-rest-framework/issues/3237
[gh3227]: https://github.com/tomchristie/django-rest-framework/issues/3227
[gh3238]: https://github.com/tomchristie/django-rest-framework/issues/3238
[gh3239]: https://github.com/tomchristie/django-rest-framework/issues/3239
[gh3254]: https://github.com/tomchristie/django-rest-framework/issues/3254
[gh3258]: https://github.com/tomchristie/django-rest-framework/issues/3258
[gh2776]: https://github.com/tomchristie/django-rest-framework/issues/2776
[gh3261]: https://github.com/tomchristie/django-rest-framework/issues/3261
[gh3260]: https://github.com/tomchristie/django-rest-framework/issues/3260
[gh3241]: https://github.com/tomchristie/django-rest-framework/issues/3241
[gh3249]: https://github.com/tomchristie/django-rest-framework/issues/3249
[gh3250]: https://github.com/tomchristie/django-rest-framework/issues/3250
[gh3275]: https://github.com/tomchristie/django-rest-framework/issues/3275
[gh3288]: https://github.com/tomchristie/django-rest-framework/issues/3288
[gh3290]: https://github.com/tomchristie/django-rest-framework/issues/3290
[gh3303]: https://github.com/tomchristie/django-rest-framework/issues/3303
[gh3313]: https://github.com/tomchristie/django-rest-framework/issues/3313
[gh3316]: https://github.com/tomchristie/django-rest-framework/issues/3316
[gh3318]: https://github.com/tomchristie/django-rest-framework/issues/3318
[gh3321]: https://github.com/tomchristie/django-rest-framework/issues/3321
[gh2761]: https://github.com/tomchristie/django-rest-framework/issues/2761
[gh3314]: https://github.com/tomchristie/django-rest-framework/issues/3314
[gh3323]: https://github.com/tomchristie/django-rest-framework/issues/3323
[gh3324]: https://github.com/tomchristie/django-rest-framework/issues/3324
[gh3359]: https://github.com/tomchristie/django-rest-framework/issues/3359
[gh3361]: https://github.com/tomchristie/django-rest-framework/issues/3361
[gh3364]: https://github.com/tomchristie/django-rest-framework/issues/3364
[gh3415]: https://github.com/tomchristie/django-rest-framework/issues/3415
[gh3550]:https://github.com/tomchristie/django-rest-framework/issues/3550
[gh3315]: https://github.com/tomchristie/django-rest-framework/issues/3315
[gh3410]: https://github.com/tomchristie/django-rest-framework/issues/3410
[gh3435]: https://github.com/tomchristie/django-rest-framework/issues/3435
[gh3450]: https://github.com/tomchristie/django-rest-framework/issues/3450
[gh3454]: https://github.com/tomchristie/django-rest-framework/issues/3454
[gh3475]: https://github.com/tomchristie/django-rest-framework/issues/3475
[gh3495]: https://github.com/tomchristie/django-rest-framework/issues/3495
[gh3509]: https://github.com/tomchristie/django-rest-framework/issues/3509
[gh3421]: https://github.com/tomchristie/django-rest-framework/issues/3421
[gh3525]: https://github.com/tomchristie/django-rest-framework/issues/3525
[gh3526]: https://github.com/tomchristie/django-rest-framework/issues/3526
[gh3429]: https://github.com/tomchristie/django-rest-framework/issues/3429
[gh3536]: https://github.com/tomchristie/django-rest-framework/issues/3536

 © Copyright .
 Created using Sphinx 1.3.1.

topics/3.0-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 3.0

The 3.0 release of Django REST framework is the result of almost four years of iteration and refinement. It comprehensively addresses some of the previous remaining design issues in serializers, fields and the generic views.

This release is incremental in nature. There are some breaking API changes, and upgrading will require you to read the release notes carefully, but the migration path should otherwise be relatively straightforward.

The difference in quality of the REST framework API and implementation should make writing, maintaining and debugging your application far easier.

3.0 is the first of three releases that have been funded by our recent Kickstarter campaign [http://kickstarter.com/projects/tomchristie/django-rest-framework-3].

As ever, a huge thank you to our many wonderful sponsors [http://www.django-rest-framework.org/topics/kickstarter-announcement/#sponsors]. If you’re looking for a Django gig, and want to work with smart community-minded folks, you should probably check out that list and see who’s hiring.

New features

Notable features of this new release include:

		Printable representations on serializers that allow you to inspect exactly what fields are present on the instance.

		Simple model serializers that are vastly easier to understand and debug, and that make it easy to switch between the implicit ModelSerializer class and the explicit Serializer class.

		A new BaseSerializer class, making it easier to write serializers for alternative storage backends, or to completely customize your serialization and validation logic.

		A cleaner fields API including new classes such as ListField and MultipleChoiceField.

		Super simple default implementations [https://github.com/tomchristie/django-rest-framework/blob/master/rest_framework/mixins.py] for the generic views.

		Support for overriding how validation errors are handled by your API.

		A metadata API that allows you to customize how OPTIONS requests are handled by your API.

		A more compact JSON output with unicode style encoding turned on by default.

		Templated based HTML form rendering for serializers. This will be finalized as public API in the upcoming 3.1 release.

Significant new functionality continues to be planned for the 3.1 and 3.2 releases. These releases will correspond to the two Kickstarter stretch goals [https://www.kickstarter.com/projects/tomchristie/django-rest-framework-3] - “Feature improvements” and “Admin interface”. Further 3.x releases will present simple upgrades, without the same level of fundamental API changes necessary for the 3.0 release.

REST framework: Under the hood.

This talk from the Django: Under the Hood [http://www.djangounderthehood.com/] event in Amsterdam, Nov 2014, gives some good background context on the design decisions behind 3.0.

Below is an in-depth guide to the API changes and migration notes for 3.0.

Request objects

The .data and .query_params properties.

The usage of request.DATA and request.FILES is now pending deprecation in favor of a single request.data attribute that contains all the parsed data.

Having separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports.

You may now pass all the request data to a serializer class in a single argument:

Do this...
ExampleSerializer(data=request.data)

Instead of passing the files argument separately:

Don't do this...
ExampleSerializer(data=request.DATA, files=request.FILES)

The usage of request.QUERY_PARAMS is now pending deprecation in favor of the lowercased request.query_params.

Serializers

Single-step object creation.

Previously the serializers used a two-step object creation, as follows:

		Validating the data would create an object instance. This instance would be available as serializer.object.

		Calling serializer.save() would then save the object instance to the database.

This style is in-line with how the ModelForm class works in Django, but is problematic for a number of reasons:

		Some data, such as many-to-many relationships, cannot be added to the object instance until after it has been saved. This type of data needed to be hidden in some undocumented state on the object instance, or kept as state on the serializer instance so that it could be used when .save() is called.

		Instantiating model instances directly means that you cannot use model manager classes for instance creation, e.g. ExampleModel.objects.create(...). Manager classes are an excellent layer at which to enforce business logic and application-level data constraints.

		The two step process makes it unclear where to put deserialization logic. For example, should extra attributes such as the current user get added to the instance during object creation or during object save?

We now use single-step object creation, like so:

		Validating the data makes the cleaned data available as serializer.validated_data.

		Calling serializer.save() then saves and returns the new object instance.

The resulting API changes are further detailed below.

The .create() and .update() methods.

The .restore_object() method is now removed, and we instead have two separate methods, .create() and .update(). These methods work slightly different to the previous .restore_object().

When using the .create() and .update() methods you should both create and save the object instance. This is in contrast to the previous .restore_object() behavior that would instantiate the object but not save it.

These methods also replace the optional .save_object() method, which no longer exists.

The following example from the tutorial previously used restore_object() to handle both creating and updating object instances.

def restore_object(self, attrs, instance=None):
 if instance:
 # Update existing instance
 instance.title = attrs.get('title', instance.title)
 instance.code = attrs.get('code', instance.code)
 instance.linenos = attrs.get('linenos', instance.linenos)
 instance.language = attrs.get('language', instance.language)
 instance.style = attrs.get('style', instance.style)
 return instance

 # Create new instance
 return Snippet(**attrs)

This would now be split out into two separate methods.

def update(self, instance, validated_data):
 instance.title = validated_data.get('title', instance.title)
 instance.code = validated_data.get('code', instance.code)
 instance.linenos = validated_data.get('linenos', instance.linenos)
 instance.language = validated_data.get('language', instance.language)
 instance.style = validated_data.get('style', instance.style)
 instance.save()
 return instance

def create(self, validated_data):
 return Snippet.objects.create(**validated_data)

Note that these methods should return the newly created object instance.

Use .validated_data instead of .object.

You must now use the .validated_data attribute if you need to inspect the data before saving, rather than using the .object attribute, which no longer exists.

For example the following code is no longer valid:

if serializer.is_valid():
 name = serializer.object.name # Inspect validated field data.
 logging.info('Creating ticket "%s"' % name)
 serializer.object.user = request.user # Include the user when saving.
 serializer.save()

Instead of using .object to inspect a partially constructed instance, you would now use .validated_data to inspect the cleaned incoming values. Also you can’t set extra attributes on the instance directly, but instead pass them to the .save() method as keyword arguments.

The corresponding code would now look like this:

if serializer.is_valid():
 name = serializer.validated_data['name'] # Inspect validated field data.
 logging.info('Creating ticket "%s"' % name)
 serializer.save(user=request.user) # Include the user when saving.

Using .is_valid(raise_exception=True)

The .is_valid() method now takes an optional boolean flag, raise_exception.

Calling .is_valid(raise_exception=True) will cause a ValidationError to be raised if the serializer data contains validation errors. This error will be handled by REST framework’s default exception handler, allowing you to remove error response handling from your view code.

The handling and formatting of error responses may be altered globally by using the EXCEPTION_HANDLER settings key.

This change also means it’s now possible to alter the style of error responses used by the built-in generic views, without having to include mixin classes or other overrides.

Using serializers.ValidationError.

Previously serializers.ValidationError error was simply a synonym for django.core.exceptions.ValidationError. This has now been altered so that it inherits from the standard APIException base class.

The reason behind this is that Django’s ValidationError class is intended for use with HTML forms and its API makes using it slightly awkward with nested validation errors that can occur in serializers.

For most users this change shouldn’t require any updates to your codebase, but it is worth ensuring that whenever raising validation errors you should prefer using the serializers.ValidationError exception class, and not Django’s built-in exception.

We strongly recommend that you use the namespaced import style of import serializers and not from serializers import ValidationError in order to avoid any potential confusion.

Change to validate_<field_name>.

The validate_<field_name> method hooks that can be attached to serializer classes change their signature slightly and return type. Previously these would take a dictionary of all incoming data, and a key representing the field name, and would return a dictionary including the validated data for that field:

def validate_score(self, attrs, source):
 if attrs['score'] % 10 != 0:
 raise serializers.ValidationError('This field should be a multiple of ten.')
 return attrs

This is now simplified slightly, and the method hooks simply take the value to be validated, and return the validated value.

def validate_score(self, value):
 if value % 10 != 0:
 raise serializers.ValidationError('This field should be a multiple of ten.')
 return value

Any ad-hoc validation that applies to more than one field should go in the .validate(self, attrs) method as usual.

Because .validate_<field_name> would previously accept the complete dictionary of attributes, it could be used to validate a field depending on the input in another field. Now if you need to do this you should use .validate() instead.

You can either return non_field_errors from the validate method by raising a simple ValidationError

def validate(self, attrs):
 # serializer.errors == {'non_field_errors': ['A non field error']}
 raise serializers.ValidationError('A non field error')

Alternatively if you want the errors to be against a specific field, use a dictionary of when instantiating the ValidationError, like so:

def validate(self, attrs):
 # serializer.errors == {'my_field': ['A field error']}
 raise serializers.ValidationError({'my_field': 'A field error'})

This ensures you can still write validation that compares all the input fields, but that marks the error against a particular field.

Removal of transform_<field_name>.

The under-used transform_<field_name> on serializer classes is no longer provided. Instead you should just override to_representation() if you need to apply any modifications to the representation style.

For example:

def to_representation(self, instance):
 ret = super(UserSerializer, self).to_representation(instance)
 ret['username'] = ret['username'].lower()
 return ret

Dropping the extra point of API means there’s now only one right way to do things. This helps with repetition and reinforcement of the core API, rather than having multiple differing approaches.

If you absolutely need to preserve transform_<field_name> behavior, for example, in order to provide a simpler 2.x to 3.0 upgrade, you can use a mixin, or serializer base class that add the behavior back in. For example:

class BaseModelSerializer(ModelSerializer):
 """
 A custom ModelSerializer class that preserves 2.x style `transform_<field_name>` behavior.
 """
 def to_representation(self, instance):
 ret = super(BaseModelSerializer, self).to_representation(instance)
 for key, value in ret.items():
 method = getattr(self, 'transform_' + key, None)
 if method is not None:
 ret[key] = method(value)
 return ret

Differences between ModelSerializer validation and ModelForm.

This change also means that we no longer use the .full_clean() method on model instances, but instead perform all validation explicitly on the serializer. This gives a cleaner separation, and ensures that there’s no automatic validation behavior on ModelSerializer classes that can’t also be easily replicated on regular Serializer classes.

For the most part this change should be transparent. Field validation and uniqueness checks will still be run as normal, but the implementation is a little different.

The one difference that you do need to note is that the .clean() method will not be called as part of serializer validation, as it would be if using a ModelForm. Use the serializer .validate() method to perform a final validation step on incoming data where required.

There may be some cases where you really do need to keep validation logic in the model .clean() method, and cannot instead separate it into the serializer .validate(). You can do so by explicitly instantiating a model instance in the .validate() method.

def validate(self, attrs):
 instance = ExampleModel(**attrs)
 instance.clean()
 return attrs

Again, you really should look at properly separating the validation logic out of the model method if possible, but the above might be useful in some backwards compatibility cases, or for an easy migration path.

Writable nested serialization.

REST framework 2.x attempted to automatically support writable nested serialization, but the behavior was complex and non-obvious. Attempting to automatically handle these case is problematic:

		There can be complex dependencies involved in order of saving multiple related model instances.

		It’s unclear what behavior the user should expect when related models are passed None data.

		It’s unclear how the user should expect to-many relationships to handle updates, creations and deletions of multiple records.

Using the depth option on ModelSerializer will now create read-only nested serializers by default.

If you try to use a writable nested serializer without writing a custom create() and/or update() method you’ll see an assertion error when you attempt to save the serializer. For example:

>>> class ProfileSerializer(serializers.ModelSerializer):
>>> class Meta:
>>> model = Profile
>>> fields = ('address', 'phone')
>>>
>>> class UserSerializer(serializers.ModelSerializer):
>>> profile = ProfileSerializer()
>>> class Meta:
>>> model = User
>>> fields = ('username', 'email', 'profile')
>>>
>>> data = {
>>> 'username': 'lizzy',
>>> 'email': 'lizzy@example.com',
>>> 'profile': {'address': '123 Acacia Avenue', 'phone': '01273 100200'}
>>> }
>>>
>>> serializer = UserSerializer(data=data)
>>> serializer.save()
AssertionError: The `.create()` method does not support nested writable fields by default. Write an explicit `.create()` method for serializer `UserSerializer`, or set `read_only=True` on nested serializer fields.

To use writable nested serialization you’ll want to declare a nested field on the serializer class, and write the create() and/or update() methods explicitly.

class UserSerializer(serializers.ModelSerializer):
 profile = ProfileSerializer()

 class Meta:
 model = User
 fields = ('username', 'email', 'profile')

 def create(self, validated_data):
 profile_data = validated_data.pop('profile')
 user = User.objects.create(**validated_data)
 Profile.objects.create(user=user, **profile_data)
 return user

The single-step object creation makes this far simpler and more obvious than the previous .restore_object() behavior.

Printable serializer representations.

Serializer instances now support a printable representation that allows you to inspect the fields present on the instance.

For instance, given the following example model:

class LocationRating(models.Model):
 location = models.CharField(max_length=100)
 rating = models.IntegerField()
 created_by = models.ForeignKey(User)

Let’s create a simple ModelSerializer class corresponding to the LocationRating model.

class LocationRatingSerializer(serializer.ModelSerializer):
 class Meta:
 model = LocationRating

We can now inspect the serializer representation in the Django shell, using python manage.py shell...

>>> serializer = LocationRatingSerializer()
>>> print(serializer) # Or use `print serializer` in Python 2.x
LocationRatingSerializer():
 id = IntegerField(label='ID', read_only=True)
 location = CharField(max_length=100)
 rating = IntegerField()
 created_by = PrimaryKeyRelatedField(queryset=User.objects.all())

The extra_kwargs option.

The write_only_fields option on ModelSerializer has been moved to PendingDeprecation and replaced with a more generic extra_kwargs.

class MySerializer(serializer.ModelSerializer):
 class Meta:
 model = MyModel
 fields = ('id', 'email', 'notes', 'is_admin')
 extra_kwargs = {
 'is_admin': {'write_only': True}
 }

Alternatively, specify the field explicitly on the serializer class:

class MySerializer(serializer.ModelSerializer):
 is_admin = serializers.BooleanField(write_only=True)

 class Meta:
 model = MyModel
 fields = ('id', 'email', 'notes', 'is_admin')

The read_only_fields option remains as a convenient shortcut for the more common case.

Changes to HyperlinkedModelSerializer.

The view_name and lookup_field options have been moved to PendingDeprecation. They are no longer required, as you can use the extra_kwargs argument instead:

class MySerializer(serializer.HyperlinkedModelSerializer):
 class Meta:
 model = MyModel
 fields = ('url', 'email', 'notes', 'is_admin')
 extra_kwargs = {
 'url': {'lookup_field': 'uuid'}
 }

Alternatively, specify the field explicitly on the serializer class:

class MySerializer(serializer.HyperlinkedModelSerializer):
 url = serializers.HyperlinkedIdentityField(
 view_name='mymodel-detail',
 lookup_field='uuid'
)

 class Meta:
 model = MyModel
 fields = ('url', 'email', 'notes', 'is_admin')

Fields for model methods and properties.

With ModelSerializer you can now specify field names in the fields option that refer to model methods or properties. For example, suppose you have the following model:

class Invitation(models.Model):
 created = models.DateTimeField()
 to_email = models.EmailField()
 message = models.CharField(max_length=1000)

 def expiry_date(self):
 return self.created + datetime.timedelta(days=30)

You can include expiry_date as a field option on a ModelSerializer class.

class InvitationSerializer(serializers.ModelSerializer):
 class Meta:
 model = Invitation
 fields = ('to_email', 'message', 'expiry_date')

These fields will be mapped to serializers.ReadOnlyField() instances.

>>> serializer = InvitationSerializer()
>>> print repr(serializer)
InvitationSerializer():
 to_email = EmailField(max_length=75)
 message = CharField(max_length=1000)
 expiry_date = ReadOnlyField()

The ListSerializer class.

The ListSerializer class has now been added, and allows you to create base serializer classes for only accepting multiple inputs.

class MultipleUserSerializer(ListSerializer):
 child = UserSerializer()

You can also still use the many=True argument to serializer classes. It’s worth noting that many=True argument transparently creates a ListSerializer instance, allowing the validation logic for list and non-list data to be cleanly separated in the REST framework codebase.

You will typically want to continue to use the existing many=True flag rather than declaring ListSerializer classes explicitly, but declaring the classes explicitly can be useful if you need to write custom create or update methods for bulk updates, or provide for other custom behavior.

See also the new ListField class, which validates input in the same way, but does not include the serializer interfaces of .is_valid(), .data, .save() and so on.

The BaseSerializer class.

REST framework now includes a simple BaseSerializer class that can be used to easily support alternative serialization and deserialization styles.

This class implements the same basic API as the Serializer class:

		.data - Returns the outgoing primitive representation.

		.is_valid() - Deserializes and validates incoming data.

		.validated_data - Returns the validated incoming data.

		.errors - Returns an errors during validation.

		.save() - Persists the validated data into an object instance.

There are four methods that can be overridden, depending on what functionality you want the serializer class to support:

		.to_representation() - Override this to support serialization, for read operations.

		.to_internal_value() - Override this to support deserialization, for write operations.

		.create() and .update() - Override either or both of these to support saving instances.

Because this class provides the same interface as the Serializer class, you can use it with the existing generic class based views exactly as you would for a regular Serializer or ModelSerializer.

The only difference you’ll notice when doing so is the BaseSerializer classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.

Read-only BaseSerializer classes.

To implement a read-only serializer using the BaseSerializer class, we just need to override the .to_representation() method. Let’s take a look at an example using a simple Django model:

class HighScore(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 player_name = models.CharField(max_length=10)
 score = models.IntegerField()

It’s simple to create a read-only serializer for converting HighScore instances into primitive data types.

class HighScoreSerializer(serializers.BaseSerializer):
 def to_representation(self, obj):
 return {
 'score': obj.score,
 'player_name': obj.player_name
 }

We can now use this class to serialize single HighScore instances:

@api_view(['GET'])
def high_score(request, pk):
 instance = HighScore.objects.get(pk=pk)
 serializer = HighScoreSerializer(instance)
 return Response(serializer.data)

Or use it to serialize multiple instances:

@api_view(['GET'])
def all_high_scores(request):
 queryset = HighScore.objects.order_by('-score')
 serializer = HighScoreSerializer(queryset, many=True)
 return Response(serializer.data)

Read-write BaseSerializer classes.

To create a read-write serializer we first need to implement a .to_internal_value() method. This method returns the validated values that will be used to construct the object instance, and may raise a ValidationError if the supplied data is in an incorrect format.

Once you’ve implemented .to_internal_value(), the basic validation API will be available on the serializer, and you will be able to use .is_valid(), .validated_data and .errors.

If you want to also support .save() you’ll need to also implement either or both of the .create() and .update() methods.

Here’s a complete example of our previous HighScoreSerializer, that’s been updated to support both read and write operations.

class HighScoreSerializer(serializers.BaseSerializer):
 def to_internal_value(self, data):
 score = data.get('score')
 player_name = data.get('player_name')

 # Perform the data validation.
 if not score:
 raise ValidationError({
 'score': 'This field is required.'
 })
 if not player_name:
 raise ValidationError({
 'player_name': 'This field is required.'
 })
 if len(player_name) > 10:
 raise ValidationError({
 'player_name': 'May not be more than 10 characters.'
 })

 # Return the validated values. This will be available as
 # the `.validated_data` property.
 return {
 'score': int(score),
 'player_name': player_name
 }

 def to_representation(self, obj):
 return {
 'score': obj.score,
 'player_name': obj.player_name
 }

 def create(self, validated_data):
 return HighScore.objects.create(**validated_data)

Creating new generic serializers with BaseSerializer.

The BaseSerializer class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.

The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.

class ObjectSerializer(serializers.BaseSerializer):
 """
 A read-only serializer that coerces arbitrary complex objects
 into primitive representations.
 """
 def to_representation(self, obj):
 for attribute_name in dir(obj):
 attribute = getattr(obj, attribute_name)
 if attribute_name('_'):
 # Ignore private attributes.
 pass
 elif hasattr(attribute, '__call__'):
 # Ignore methods and other callables.
 pass
 elif isinstance(attribute, (str, int, bool, float, type(None))):
 # Primitive types can be passed through unmodified.
 output[attribute_name] = attribute
 elif isinstance(attribute, list):
 # Recursively deal with items in lists.
 output[attribute_name] = [
 self.to_representation(item) for item in attribute
]
 elif isinstance(attribute, dict):
 # Recursively deal with items in dictionaries.
 output[attribute_name] = {
 str(key): self.to_representation(value)
 for key, value in attribute.items()
 }
 else:
 # Force anything else to its string representation.
 output[attribute_name] = str(attribute)

Serializer fields

The Field and ReadOnly field classes.

There are some minor tweaks to the field base classes.

Previously we had these two base classes:

		Field as the base class for read-only fields. A default implementation was included for serializing data.

		WritableField as the base class for read-write fields.

We now use the following:

		Field is the base class for all fields. It does not include any default implementation for either serializing or deserializing data.

		ReadOnlyField is a concrete implementation for read-only fields that simply returns the attribute value without modification.

The required, allow_null, allow_blank and default arguments.

REST framework now has more explicit and clear control over validating empty values for fields.

Previously the meaning of the required=False keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be None or the empty string.

We now have a better separation, with separate required, allow_null and allow_blank arguments.

The following set of arguments are used to control validation of empty values:

		required=False: The value does not need to be present in the input, and will not be passed to .create() or .update() if it is not seen.

		default=<value>: The value does not need to be present in the input, and a default value will be passed to .create() or .update() if it is not seen.

		allow_null=True: None is a valid input.

		allow_blank=True: '' is valid input. For CharField and subclasses only.

Typically you’ll want to use required=False if the corresponding model field has a default value, and additionally set either allow_null=True or allow_blank=True if required.

The default argument is also available and always implies that the field is not required to be in the input. It is unnecessary to use the required argument when a default is specified, and doing so will result in an error.

Coercing output types.

The previous field implementations did not forcibly coerce returned values into the correct type in many cases. For example, an IntegerField would return a string output if the attribute value was a string. We now more strictly coerce to the correct return type, leading to more constrained and expected behavior.

Removal of .validate().

The .validate() method is now removed from field classes. This method was in any case undocumented and not public API. You should instead simply override to_internal_value().

class UppercaseCharField(serializers.CharField):
 def to_internal_value(self, data):
 value = super(UppercaseCharField, self).to_internal_value(data)
 if value != value.upper():
 raise serializers.ValidationError('The input should be uppercase only.')
 return value

Previously validation errors could be raised in either .to_native() or .validate(), making it non-obvious which should be used. Providing only a single point of API ensures more repetition and reinforcement of the core API.

The ListField class.

The ListField class has now been added. This field validates list input. It takes a child keyword argument which is used to specify the field used to validate each item in the list. For example:

scores = ListField(child=IntegerField(min_value=0, max_value=100))

You can also use a declarative style to create new subclasses of ListField, like this:

class ScoresField(ListField):
 child = IntegerField(min_value=0, max_value=100)

We can now use the ScoresField class inside another serializer:

scores = ScoresField()

See also the new ListSerializer class, which validates input in the same way, but also includes the serializer interfaces of .is_valid(), .data, .save() and so on.

The ChoiceField class may now accept a flat list.

The ChoiceField class may now accept a list of choices in addition to the existing style of using a list of pairs of (name, display_value). The following is now valid:

color = ChoiceField(choices=['red', 'green', 'blue'])

The MultipleChoiceField class.

The MultipleChoiceField class has been added. This field acts like ChoiceField, but returns a set, which may include none, one or many of the valid choices.

Changes to the custom field API.

The from_native(self, value) and to_native(self, data) method names have been replaced with the more obviously named to_internal_value(self, data) and to_representation(self, value).

The field_from_native() and field_to_native() methods are removed. Previously you could use these methods if you wanted to customise the behaviour in a way that did not simply lookup the field value from the object. For example...

def field_to_native(self, obj, field_name):
 """A custom read-only field that returns the class name."""
 return obj.__class__.__name__

Now if you need to access the entire object you’ll instead need to override one or both of the following:

		Use get_attribute to modify the attribute value passed to to_representation().

		Use get_value to modify the data value passed to_internal_value().

For example:

def get_attribute(self, obj):
 # Pass the entire object through to `to_representation()`,
 # instead of the standard attribute lookup.
 return obj

def to_representation(self, value):
 return value.__class__.__name__

Explicit queryset required on relational fields.

Previously relational fields that were explicitly declared on a serializer class could omit the queryset argument if (and only if) they were declared on a ModelSerializer.

This code would be valid in 2.4.3:

class AccountSerializer(serializers.ModelSerializer):
 organizations = serializers.SlugRelatedField(slug_field='name')

 class Meta:
 model = Account

However this code would not be valid in 3.0:

Missing `queryset`
class AccountSerializer(serializers.Serializer):
 organizations = serializers.SlugRelatedField(slug_field='name')

 def restore_object(self, attrs, instance=None):
 # ...

The queryset argument is now always required for writable relational fields.
This removes some magic and makes it easier and more obvious to move between implicit ModelSerializer classes and explicit Serializer classes.

class AccountSerializer(serializers.ModelSerializer):
 organizations = serializers.SlugRelatedField(
 slug_field='name',
 queryset=Organization.objects.all()
)

 class Meta:
 model = Account

The queryset argument is only ever required for writable fields, and is not required or valid for fields with read_only=True.

Optional argument to SerializerMethodField.

The argument to SerializerMethodField is now optional, and defaults to get_<field_name>. For example the following is valid:

class AccountSerializer(serializers.Serializer):
 # `method_name='get_billing_details'` by default.
 billing_details = serializers.SerializerMethodField()

 def get_billing_details(self, account):
 return calculate_billing(account)

In order to ensure a consistent code style an assertion error will be raised if you include a redundant method name argument that matches the default method name. For example, the following code will raise an error:

billing_details = serializers.SerializerMethodField('get_billing_details')

Enforcing consistent source usage.

I’ve see several codebases that unnecessarily include the source argument, setting it to the same value as the field name. This usage is redundant and confusing, making it less obvious that source is usually not required.

The following usage will now raise an error:

email = serializers.EmailField(source='email')

The UniqueValidator and UniqueTogetherValidator classes.

REST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit Serializer class instead of using ModelSerializer.

The UniqueValidator should be applied to a serializer field, and takes a single queryset argument.

from rest_framework import serializers
from rest_framework.validators import UniqueValidator

class OrganizationSerializer(serializers.Serializer):
 url = serializers.HyperlinkedIdentityField(view_name='organization_detail')
 created = serializers.DateTimeField(read_only=True)
 name = serializers.CharField(
 max_length=100,
 validators=UniqueValidator(queryset=Organization.objects.all())
)

The UniqueTogetherValidator should be applied to a serializer, and takes a queryset argument and a fields argument which should be a list or tuple of field names.

class RaceResultSerializer(serializers.Serializer):
 category = serializers.ChoiceField(['5k', '10k'])
 position = serializers.IntegerField()
 name = serializers.CharField(max_length=100)

 class Meta:
 validators = [UniqueTogetherValidator(
 queryset=RaceResult.objects.all(),
 fields=('category', 'position')
)]

The UniqueForDateValidator classes.

REST framework also now includes explicit validator classes for validating the unique_for_date, unique_for_month, and unique_for_year model field constraints. These are used internally instead of calling into Model.full_clean().

These classes are documented in the Validators section of the documentation.

Generic views

Simplification of view logic.

The view logic for the default method handlers has been significantly simplified, due to the new serializers API.

Changes to pre/post save hooks.

The pre_save and post_save hooks no longer exist, but are replaced with perform_create(self, serializer) and perform_update(self, serializer).

These methods should save the object instance by calling serializer.save(), adding in any additional arguments as required. They may also perform any custom pre-save or post-save behavior.

For example:

def perform_create(self, serializer):
 # Include the owner attribute directly, rather than from request data.
 instance = serializer.save(owner=self.request.user)
 # Perform a custom post-save action.
 send_email(instance.to_email, instance.message)

The pre_delete and post_delete hooks no longer exist, and are replaced with .perform_destroy(self, instance), which should delete the instance and perform any custom actions.

def perform_destroy(self, instance):
 # Perform a custom pre-delete action.
 send_deletion_alert(user=instance.created_by, deleted=instance)
 # Delete the object instance.
 instance.delete()

Removal of view attributes.

The .object and .object_list attributes are no longer set on the view instance. Treating views as mutable object instances that store state during the processing of the view tends to be poor design, and can lead to obscure flow logic.

I would personally recommend that developers treat view instances as immutable objects in their application code.

PUT as create.

Allowing PUT as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It’s also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning 404 responses.

Both styles “PUT as 404” and “PUT as create” can be valid in different circumstances, but we’ve now opted for the 404 behavior as the default, due to it being simpler and more obvious.

If you need to restore the previous behavior you may want to include this AllowPUTAsCreateMixin class [https://gist.github.com/tomchristie/a2ace4577eff2c603b1b] as a mixin to your views.

Customizing error responses.

The generic views now raise ValidationFailed exception for invalid data. This exception is then dealt with by the exception handler, rather than the view returning a 400 Bad Request response directly.

This change means that you can now easily customize the style of error responses across your entire API, without having to modify any of the generic views.

The metadata API

Behavior for dealing with OPTIONS requests was previously built directly into the class based views. This has now been properly separated out into a Metadata API that allows the same pluggable style as other API policies in REST framework.

This makes it far easier to use a different style for OPTIONS responses throughout your API, and makes it possible to create third-party metadata policies.

Serializers as HTML forms

REST framework 3.0 includes templated HTML form rendering for serializers.

This API should not yet be considered finalized, and will only be promoted to public API for the 3.1 release.

Significant changes that you do need to be aware of include:

		Nested HTML forms are now supported, for example, a UserSerializer with a nested ProfileSerializer will now render a nested fieldset when used in the browsable API.

		Nested lists of HTML forms are not yet supported, but are planned for 3.1.

		Because we now use templated HTML form generation, the widget option is no longer available for serializer fields. You can instead control the template that is used for a given field, by using the style dictionary.

The style keyword argument for serializer fields.

The style keyword argument can be used to pass through additional information from a serializer field, to the renderer class. In particular, the HTMLFormRenderer uses the base_template key to determine which template to render the field with.

For example, to use a textarea control instead of the default input control, you would use the following…

additional_notes = serializers.CharField(
 style={'base_template': 'textarea.html'}
)

Similarly, to use a radio button control instead of the default select control, you would use the following…

color_channel = serializers.ChoiceField(
 choices=['red', 'blue', 'green'],
 style={'base_template': 'radio.html'}
)

This API should be considered provisional, and there may be minor alterations with the incoming 3.1 release.

API style

There are some improvements in the default style we use in our API responses.

Unicode JSON by default.

Unicode JSON is now the default. The UnicodeJSONRenderer class no longer exists, and the UNICODE_JSON setting has been added. To revert this behavior use the new setting:

REST_FRAMEWORK = {
 'UNICODE_JSON': False
}

Compact JSON by default.

We now output compact JSON in responses by default. For example, we return:

{"email":"amy@example.com","is_admin":true}

Instead of the following:

{"email": "amy@example.com", "is_admin": true}

The COMPACT_JSON setting has been added, and can be used to revert this behavior if needed:

REST_FRAMEWORK = {
 'COMPACT_JSON': False
}

File fields as URLs

The FileField and ImageField classes are now represented as URLs by default. You should ensure you set Django’s standard MEDIA_URL setting [https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-MEDIA_URL] appropriately, and ensure your application serves the uploaded files [https://docs.djangoproject.com/en/dev/howto/static-files/#serving-uploaded-files-in-development].

You can revert this behavior, and display filenames in the representation by using the UPLOADED_FILES_USE_URL settings key:

REST_FRAMEWORK = {
 'UPLOADED_FILES_USE_URL': False
}

You can also modify serializer fields individually, using the use_url argument:

uploaded_file = serializers.FileField(use_url=False)

Also note that you should pass the request object to the serializer as context when instantiating it, so that a fully qualified URL can be returned. Returned URLs will then be of the form https://example.com/url_path/filename.txt. For example:

context = {'request': request}
serializer = ExampleSerializer(instance, context=context)
return Response(serializer.data)

If the request is omitted from the context, the returned URLs will be of the form /url_path/filename.txt.

Throttle headers using Retry-After.

The custom X-Throttle-Wait-Second header has now been dropped in favor of the standard Retry-After header. You can revert this behavior if needed by writing a custom exception handler for your application.

Date and time objects as ISO-8859-1 strings in serializer data.

Date and Time objects are now coerced to strings by default in the serializer output. Previously they were returned as Date, Time and DateTime objects, and later coerced to strings by the renderer.

You can modify this behavior globally by settings the existing DATE_FORMAT, DATETIME_FORMAT and TIME_FORMAT settings keys. Setting these values to None instead of their default value of 'iso-8859-1' will result in native objects being returned in serializer data.

REST_FRAMEWORK = {
 # Return native `Date` and `Time` objects in `serializer.data`
 'DATETIME_FORMAT': None
 'DATE_FORMAT': None
 'TIME_FORMAT': None
}

You can also modify serializer fields individually, using the date_format, time_format and datetime_format arguments:

Return `DateTime` instances in `serializer.data`, not strings.
created = serializers.DateTimeField(format=None)

Decimals as strings in serializer data.

Decimals are now coerced to strings by default in the serializer output. Previously they were returned as Decimal objects, and later coerced to strings by the renderer.

You can modify this behavior globally by using the COERCE_DECIMAL_TO_STRING settings key.

REST_FRAMEWORK = {
 'COERCE_DECIMAL_TO_STRING': False
}

Or modify it on an individual serializer field, using the coerce_to_string keyword argument.

Return `Decimal` instances in `serializer.data`, not strings.
amount = serializers.DecimalField(
 max_digits=10,
 decimal_places=2,
 coerce_to_string=False
)

The default JSON renderer will return float objects for un-coerced Decimal instances. This allows you to easily switch between string or float representations for decimals depending on your API design needs.

Miscellaneous notes

		The serializer ChoiceField does not currently display nested choices, as was the case in 2.4. This will be address as part of 3.1.

		Due to the new templated form rendering, the ‘widget’ option is no longer valid. This means there’s no easy way of using third party “autocomplete” widgets for rendering select inputs that contain a large number of choices. You’ll either need to use a regular select or a plain text input. We may consider addressing this in 3.1 or 3.2 if there’s sufficient demand.

		Some of the default validation error messages were rewritten and might no longer be pre-translated. You can still create language files with Django [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files] if you wish to localize them.

		APIException subclasses could previously take any arbitrary type in the detail argument. These exceptions now use translatable text strings, and as a result call force_text on the detail argument, which must be a string. If you need complex arguments to an APIException class, you should subclass it and override the __init__() method. Typically you’ll instead want to use a custom exception handler to provide for non-standard error responses.

What’s coming next

3.0 is an incremental release, and there are several upcoming features that will build on the baseline improvements that it makes.

The 3.1 release is planned to address improvements in the following components:

		Public API for using serializers as HTML forms.

		Request parsing, mediatypes & the implementation of the browsable API.

		Introduction of a new pagination API.

		Better support for API versioning.

The 3.2 release is planned to introduce an alternative admin-style interface to the browsable API.

You can follow development on the GitHub site, where we use milestones to indicate planning timescales [https://github.com/tomchristie/django-rest-framework/milestones].

 © Copyright .
 Created using Sphinx 1.3.1.

topics/ajax-csrf-cors.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Working with AJAX, CSRF & CORS

“Take a close look at possible CSRF / XSRF vulnerabilities on your own websites. They’re the worst kind of vulnerability

—

 very easy to exploit by attackers, yet not so intuitively easy to understand for software developers, at least until you’ve been bitten by one.”

—

 Jeff Atwood [http://www.codinghorror.com/blog/2008/10/preventing-csrf-and-xsrf-attacks.html]

Javascript clients

If you’re building a JavaScript client to interface with your Web API, you’ll need to consider if the client can use the same authentication policy that is used by the rest of the website, and also determine if you need to use CSRF tokens or CORS headers.

AJAX requests that are made within the same context as the API they are interacting with will typically use SessionAuthentication. This ensures that once a user has logged in, any AJAX requests made can be authenticated using the same session-based authentication that is used for the rest of the website.

AJAX requests that are made on a different site from the API they are communicating with will typically need to use a non-session-based authentication scheme, such as TokenAuthentication.

CSRF protection

Cross Site Request Forgery [https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)] protection is a mechanism of guarding against a particular type of attack, which can occur when a user has not logged out of a web site, and continues to have a valid session. In this circumstance a malicious site may be able to perform actions against the target site, within the context of the logged-in session.

To guard against these type of attacks, you need to do two things:

		Ensure that the ‘safe’ HTTP operations, such as GET, HEAD and OPTIONS cannot be used to alter any server-side state.

		Ensure that any ‘unsafe’ HTTP operations, such as POST, PUT, PATCH and DELETE, always require a valid CSRF token.

If you’re using SessionAuthentication you’ll need to include valid CSRF tokens for any POST, PUT, PATCH or DELETE operations.

In order to make AJAX requests, you need to include CSRF token in the HTTP header, as described in the Django documentation [https://docs.djangoproject.com/en/dev/ref/csrf/#ajax].

CORS

Cross-Origin Resource Sharing [http://www.w3.org/TR/cors/] is a mechanism for allowing clients to interact with APIs that are hosted on a different domain. CORS works by requiring the server to include a specific set of headers that allow a browser to determine if and when cross-domain requests should be allowed.

The best way to deal with CORS in REST framework is to add the required response headers in middleware. This ensures that CORS is supported transparently, without having to change any behavior in your views.

Otto Yiu [https://github.com/ottoyiu/] maintains the django-cors-headers [https://github.com/ottoyiu/django-cors-headers/] package, which is known to work correctly with REST framework APIs.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/third-party-resources.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Third Party Resources

Software ecosystems […] establish a community that further accelerates the sharing of knowledge, content, issues, expertise and skills.

—

 Jan Bosch [http://www.software-ecosystems.com/Software_Ecosystems/Ecosystems.html].

About Third Party Packages

Third Party Packages allow developers to share code that extends the functionality of Django REST framework, in order to support additional use-cases.

We support, encourage and strongly favor the creation of Third Party Packages to encapsulate new behavior rather than adding additional functionality directly to Django REST Framework.

We aim to make creating third party packages as easy as possible, whilst keeping a simple and well maintained core API. By promoting third party packages we ensure that the responsibility for a package remains with its author. If a package proves suitably popular it can always be considered for inclusion into the core REST framework.

If you have an idea for a new feature please consider how it may be packaged as a Third Party Package. We’re always happy to discuss ideas on the Mailing List [https://groups.google.com/forum/#!forum/django-rest-framework].

How to create a Third Party Package

Creating your package

You can use this cookiecutter template [https://github.com/jpadilla/cookiecutter-django-rest-framework] for creating reusable Django REST Framework packages quickly. Cookiecutter creates projects from project templates. While optional, this cookiecutter template includes best practices from Django REST framework and other packages, as well as a Travis CI configuration, Tox configuration, and a sane setup.py for easy PyPI registration/distribution.

Note: Let us know if you have an alternate cookiecuter package so we can also link to it.

Running the initial cookiecutter command

To run the initial cookiecutter command, you’ll first need to install the Python cookiecutter package.

$ pip install cookiecutter

Once cookiecutter is installed just run the following to create a new project.

$ cookiecutter gh:jpadilla/cookiecutter-django-rest-framework

You’ll be prompted for some questions, answer them, then it’ll create your Python package in the current working directory based on those values.

full_name (default is "Your full name here")? Johnny Appleseed
email (default is "you@example.com")? jappleseed@example.com
github_username (default is "yourname")? jappleseed
pypi_project_name (default is "dj-package")? djangorestframework-custom-auth
repo_name (default is "dj-package")? django-rest-framework-custom-auth
app_name (default is "djpackage")? custom_auth
project_short_description (default is "Your project description goes here")?
year (default is "2014")?
version (default is "0.1.0")?

Getting it onto GitHub

To put your project up on GitHub, you’ll need a repository for it to live in. You can create a new repository here [https://github.com/new]. If you need help, check out the Create A Repo [https://help.github.com/articles/create-a-repo/] article on GitHub.

Adding to Travis CI

We recommend using Travis CI [https://travis-ci.org], a hosted continuous integration service which integrates well with GitHub and is free for public repositories.

To get started with Travis CI, sign in [https://travis-ci.org] with your GitHub account. Once you’re signed in, go to your profile page [https://travis-ci.org/profile] and enable the service hook for the repository you want.

If you use the cookiecutter template, your project will already contain a .travis.yml file which Travis CI will use to build your project and run tests. By default, builds are triggered everytime you push to your repository or create Pull Request.

Uploading to PyPI

Once you’ve got at least a prototype working and tests running, you should publish it on PyPI to allow others to install it via pip.

You must register [https://pypi.python.org/pypi?%3Aaction=register_form] an account before publishing to PyPI.

To register your package on PyPI run the following command.

$ python setup.py register

If this is the first time publishing to PyPI, you’ll be prompted to login.

Note: Before publishing you’ll need to make sure you have the latest pip that supports wheel as well as install the wheel package.

$ pip install --upgrade pip
$ pip install wheel

After this, every time you want to release a new version on PyPI just run the following command.

$ python setup.py publish
You probably want to also tag the version now:
 git tag -a {0} -m 'version 0.1.0'
 git push --tags

After releasing a new version to PyPI, it’s always a good idea to tag the version and make available as a GitHub Release.

We recommend to follow Semantic Versioning [http://semver.org/] for your package’s versions.

Development

Version requirements

The cookiecutter template assumes a set of supported versions will be provided for Python and Django. Make sure you correctly update your requirements, docs, tox.ini, .travis.yml, and setup.py to match the set of versions you wish to support.

Tests

The cookiecutter template includes a runtests.py which uses the pytest package as a test runner.

Before running, you’ll need to install a couple test requirements.

$ pip install -r requirements.txt

Once requirements installed, you can run runtests.py.

$./runtests.py

Run using a more concise output style.

$./runtests.py -q

Run the tests using a more concise output style, no coverage, no flake8.

$./runtests.py --fast

Don’t run the flake8 code linting.

$./runtests.py --nolint

Only run the flake8 code linting, don’t run the tests.

$./runtests.py --lintonly

Run the tests for a given test case.

$./runtests.py MyTestCase

Run the tests for a given test method.

$./runtests.py MyTestCase.test_this_method

Shorter form to run the tests for a given test method.

$./runtests.py test_this_method

To run your tests against multiple versions of Python as different versions of requirements such as Django we recommend using tox. Tox [https://tox.readthedocs.org/en/latest/] is a generic virtualenv management and test command line tool.

First, install tox globally.

$ pip install tox

To run tox, just simply run:

$ tox

To run a particular tox environment:

$ tox -e envlist

envlist is a comma-separated value to that specifies the environments to run tests against. To view a list of all possible test environments, run:

$ tox -l

Version compatibility

Sometimes, in order to ensure your code works on various different versions of Django, Python or third party libraries, you’ll need to run slightly different code depending on the environment. Any code that branches in this way should be isolated into a compat.py module, and should provide a single common interface that the rest of the codebase can use.

Check out Django REST framework’s compat.py [https://github.com/tomchristie/django-rest-framework/blob/master/rest_framework/compat.py] for an example.

Once your package is available

Once your package is decently documented and available on PyPI, you might want share it with others that might find it useful.

Adding to the Django REST framework grid

We suggest adding your package to the REST Framework [https://www.djangopackages.com/grids/g/django-rest-framework/] grid on Django Packages.

Adding to the Django REST framework docs

Create a Pull Request [https://github.com/tomchristie/django-rest-framework/compare] or Issue [https://github.com/tomchristie/django-rest-framework/issues/new] on GitHub, and we’ll add a link to it from the main REST framework documentation. You can add your package under Third party packages of the API Guide section that best applies, like Authentication or Permissions. You can also link your package under the Third Party Resources section.

Announce on the discussion group.

You can also let others know about your package through the discussion group [https://groups.google.com/forum/#!forum/django-rest-framework].

Existing Third Party Packages

Django REST Framework has a growing community of developers, packages, and resources.

Check out a grid detailing all the packages and ecosystem around Django REST Framework at Django Packages [https://www.djangopackages.com/grids/g/django-rest-framework/].

To submit new content, open an issue [https://github.com/tomchristie/django-rest-framework/issues/new] or create a pull request [https://github.com/tomchristie/django-rest-framework/compare].

Authentication

		djangorestframework-digestauth [https://github.com/juanriaza/django-rest-framework-digestauth] - Provides Digest Access Authentication support.

		django-oauth-toolkit [https://github.com/evonove/django-oauth-toolkit] - Provides OAuth 2.0 support.

		doac [https://github.com/Rediker-Software/doac] - Provides OAuth 2.0 support.

		djangorestframework-jwt [https://github.com/GetBlimp/django-rest-framework-jwt] - Provides JSON Web Token Authentication support.

		hawkrest [https://github.com/kumar303/hawkrest] - Provides Hawk HTTP Authorization.

		djangorestframework-httpsignature [https://github.com/etoccalino/django-rest-framework-httpsignature] - Provides an easy to use HTTP Signature Authentication mechanism.

		djoser [https://github.com/sunscrapers/djoser] - Provides a set of views to handle basic actions such as registration, login, logout, password reset and account activation.

		django-rest-auth [https://github.com/Tivix/django-rest-auth/] - Provides a set of REST API endpoints for registration, authentication (including social media authentication), password reset, retrieve and update user details, etc.

Permissions

		drf-any-permissions [https://github.com/kevin-brown/drf-any-permissions] - Provides alternative permission handling.

		djangorestframework-composed-permissions [https://github.com/niwibe/djangorestframework-composed-permissions] - Provides a simple way to define complex permissions.

		rest_condition [https://github.com/caxap/rest_condition] - Another extension for building complex permissions in a simple and convenient way.

		dry-rest-permissions [https://github.com/Helioscene/dry-rest-permissions] - Provides a simple way to define permissions for individual api actions.

Serializers

		django-rest-framework-mongoengine [https://github.com/umutbozkurt/django-rest-framework-mongoengine] - Serializer class that supports using MongoDB as the storage layer for Django REST framework.

		djangorestframework-gis [https://github.com/djangonauts/django-rest-framework-gis] - Geographic add-ons

		djangorestframework-hstore [https://github.com/djangonauts/django-rest-framework-hstore] - Serializer class to support django-hstore DictionaryField model field and its schema-mode feature.

Serializer fields

		drf-compound-fields [https://github.com/estebistec/drf-compound-fields] - Provides “compound” serializer fields, such as lists of simple values.

		django-extra-fields [https://github.com/Hipo/drf-extra-fields] - Provides extra serializer fields.

		django-versatileimagefield [https://github.com/WGBH/django-versatileimagefield] - Provides a drop-in replacement for Django’s stock ImageField that makes it easy to serve images in multiple sizes/renditions from a single field. For DRF-specific implementation docs, click here [http://django-versatileimagefield.readthedocs.org/en/latest/drf_integration.html].

Views

		djangorestframework-bulk [https://github.com/miki725/django-rest-framework-bulk] - Implements generic view mixins as well as some common concrete generic views to allow to apply bulk operations via API requests.

		django-rest-multiple-models [https://github.com/Axiologue/DjangoRestMultipleModels] - Provides a generic view (and mixin) for sending multiple serialized models and/or querysets via a single API request.

Routers

		drf-nested-routers [https://github.com/alanjds/drf-nested-routers] - Provides routers and relationship fields for working with nested resources.

		wq.db.rest [http://wq.io/docs/about-rest] - Provides an admin-style model registration API with reasonable default URLs and viewsets.

Parsers

		djangorestframework-msgpack [https://github.com/juanriaza/django-rest-framework-msgpack] - Provides MessagePack renderer and parser support.

		djangorestframework-camel-case [https://github.com/vbabiy/djangorestframework-camel-case] - Provides camel case JSON renderers and parsers.

Renderers

		djangorestframework-csv [https://github.com/mjumbewu/django-rest-framework-csv] - Provides CSV renderer support.

		drf_ujson [https://github.com/gizmag/drf-ujson-renderer] - Implements JSON rendering using the UJSON package.

		rest-pandas [https://github.com/wq/django-rest-pandas] - Pandas DataFrame-powered renderers including Excel, CSV, and SVG formats.

Filtering

		djangorestframework-chain [https://github.com/philipn/django-rest-framework-chain] - Allows arbitrary chaining of both relations and lookup filters.

		django-url-filter [https://github.com/miki725/django-url-filter] - Allows a safe way to filter data via human-friendly URLs. It is a generic library which is not tied to DRF but it provides easy integration with DRF.

Misc

		cookiecutter-django-rest [https://github.com/agconti/cookiecutter-django-rest] - A cookiecutter template that takes care of the setup and configuration so you can focus on making your REST apis awesome.

		djangorestrelationalhyperlink [https://github.com/fredkingham/django_rest_model_hyperlink_serializers_project] - A hyperlinked serialiser that can can be used to alter relationships via hyperlinks, but otherwise like a hyperlink model serializer.

		django-rest-swagger [https://github.com/marcgibbons/django-rest-swagger] - An API documentation generator for Swagger UI.

		django-rest-framework-proxy [https://github.com/eofs/django-rest-framework-proxy] - Proxy to redirect incoming request to another API server.

		gaiarestframework [https://github.com/AppsFuel/gaiarestframework] - Utils for django-rest-framework

		drf-extensions [https://github.com/chibisov/drf-extensions] - A collection of custom extensions

		ember-django-adapter [https://github.com/dustinfarris/ember-django-adapter] - An adapter for working with Ember.js

		django-versatileimagefield [https://github.com/WGBH/django-versatileimagefield] - Provides a drop-in replacement for Django’s stock ImageField that makes it easy to serve images in multiple sizes/renditions from a single field. For DRF-specific implementation docs, click here [http://django-versatileimagefield.readthedocs.org/en/latest/drf_integration.html].

		drf-tracking [https://github.com/aschn/drf-tracking] - Utilities to track requests to DRF API views.

		django-rest-framework-braces [https://github.com/dealertrack/django-rest-framework-braces] - Collection of utilities for working with Django Rest Framework. The most notable ones are FormSerializer [https://django-rest-framework-braces.readthedocs.org/en/latest/overview.html#formserializer] and SerializerForm [https://django-rest-framework-braces.readthedocs.org/en/latest/overview.html#serializerform], which are adapters between DRF serializers and Django forms.

		drf-haystack [http://drf-haystack.readthedocs.org/en/latest/] - Haystack search for Django Rest Framework

Other Resources

Tutorials

		Beginner’s Guide to the Django Rest Framework [http://code.tutsplus.com/tutorials/beginners-guide-to-the-django-rest-framework–cms-19786]

		Getting Started with Django Rest Framework and AngularJS [http://blog.kevinastone.com/getting-started-with-django-rest-framework-and-angularjs.html]

		End to end web app with Django-Rest-Framework & AngularJS [http://blog.mourafiq.com/post/55034504632/end-to-end-web-app-with-django-rest-framework]

		Start Your API - django-rest-framework part 1 [https://godjango.com/41-start-your-api-django-rest-framework-part-1/]

		Permissions & Authentication - django-rest-framework part 2 [https://godjango.com/43-permissions-authentication-django-rest-framework-part-2/]

		ViewSets and Routers - django-rest-framework part 3 [https://godjango.com/45-viewsets-and-routers-django-rest-framework-part-3/]

		Django Rest Framework User Endpoint [http://richardtier.com/2014/02/25/django-rest-framework-user-endpoint/]

		Check credentials using Django Rest Framework [http://richardtier.com/2014/03/06/110/]

Videos

		Ember and Django Part 1 (Video) [http://www.neckbeardrepublic.com/screencasts/ember-and-django-part-1]

		Django Rest Framework Part 1 (Video) [http://www.neckbeardrepublic.com/screencasts/django-rest-framework-part-1]

		Pyowa July 2013 - Django Rest Framework (Video) [http://www.youtube.com/watch?v=e1zrehvxpbo]

		django-rest-framework and angularjs (Video) [http://www.youtube.com/watch?v=q8frbgtj020]

Articles

		Web API performance: profiling Django REST framework [http://dabapps.com/blog/api-performance-profiling-django-rest-framework/]

		API Development with Django and Django REST Framework [https://bnotions.com/api-development-with-django-and-django-rest-framework/]

Documentations

		Classy Django REST Framework [http://www.cdrf.co]

 © Copyright .
 Created using Sphinx 1.3.1.

topics/rest-framework-2-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 2.0

Most people just make the mistake that it should be simple to design simple things. In reality, the effort required to design something is inversely proportional to the simplicity of the result.

—

 Roy Fielding [http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven#comment-724]

Announcement: REST framework 2 released - Tue 30th Oct 2012

REST framework 2 is an almost complete reworking of the original framework, which comprehensively addresses some of the original design issues.

Because the latest version should be considered a re-release, rather than an incremental improvement, we’ve skipped a version, and called this release Django REST framework 2.0.

This article is intended to give you a flavor of what REST framework 2 is, and why you might want to give it a try.

User feedback

Before we get cracking, let’s start with the hard sell, with a few bits of feedback from some early adopters…

“Django REST framework 2 is beautiful. Some of the API design is worthy of @kennethreitz.” - Kit La Touche [https://twitter.com/kobutsu/status/261689665952833536]

“Since it’s pretty much just Django, controlling things like URLs has been a breeze... I think [REST framework 2] has definitely got the right approach here; even simple things like being able to override a function called post to do custom work during rather than having to intimately know what happens during a post make a huge difference to your productivity.” - Ian Strachan [https://groups.google.com/d/msg/django-rest-framework/heRGHzG6BWQ/ooVURgpwVC0J]

“I switched to the 2.0 branch and I don’t regret it - fully refactored my code in another

½

 day and it’s much more to my tastes” - Bruno Desthuilliers [https://groups.google.com/d/msg/django-rest-framework/flsXbvYqRoY/9lSyntOf5cUJ]

Sounds good, right? Let’s get into some details...

Serialization

REST framework 2 includes a totally re-worked serialization engine, that was initially intended as a replacement for Django’s existing inflexible fixture serialization, and which meets the following design goals:

		A declarative serialization API, that mirrors Django’s Forms/ModelForms API.

		Structural concerns are decoupled from encoding concerns.

		Able to support rendering and parsing to many formats, including both machine-readable representations and HTML forms.

		Validation that can be mapped to obvious and comprehensive error responses.

		Serializers that support both nested, flat, and partially-nested representations.

		Relationships that can be expressed as primary keys, hyperlinks, slug fields, and other custom representations.

Mapping between the internal state of the system and external representations of that state is the core concern of building Web APIs. Designing serializers that allow the developer to do so in a flexible and obvious way is a deceptively difficult design task, and with the new serialization API we think we’ve pretty much nailed it.

Generic views

When REST framework was initially released at the start of 2011, the current Django release was version 1.2. REST framework included a backport of Django 1.3’s upcoming View class, but it didn’t take full advantage of the generic view implementations.

With the new release the generic views in REST framework now tie in with Django’s generic views. The end result is that framework is clean, lightweight and easy to use.

Requests, Responses & Views

REST framework 2 includes Request and Response classes, than are used in place of Django’s existing HttpRequest and HttpResponse classes. Doing so allows logic such as parsing the incoming request or rendering the outgoing response to be supported transparently by the framework.

The Request/Response approach leads to a much cleaner API, less logic in the view itself, and a simple, obvious request-response cycle.

REST framework 2 also allows you to work with both function-based and class-based views. For simple API views all you need is a single @api_view decorator, and you’re good to go.

API Design

Pretty much every aspect of REST framework has been reworked, with the aim of ironing out some of the design flaws of the previous versions. Each of the components of REST framework are cleanly decoupled, and can be used independently of each-other, and there are no monolithic resource classes, overcomplicated mixin combinations, or opinionated serialization or URL routing decisions.

The Browsable API

Django REST framework’s most unique feature is the way it is able to serve up both machine-readable representations, and a fully browsable HTML representation to the same endpoints.

Browsable Web APIs are easier to work with, visualize and debug, and generally makes it easier and more frictionless to inspect and work with.

With REST framework 2, the browsable API gets a snazzy new bootstrap-based theme that looks great and is even nicer to work with.

There are also some functionality improvements - actions such as as POST and DELETE will only display if the user has the appropriate permissions.

[image: Browsable API]

Image above: An example of the browsable API in REST framework 2

Documentation

As you can see the documentation for REST framework has been radically improved. It gets a completely new style, using markdown for the documentation source, and a bootstrap-based theme for the styling.

We’re really pleased with how the docs style looks - it’s simple and clean, is easy to navigate around, and we think it reads great.

Summary

In short, we’ve engineered the hell outta this thing, and we’re incredibly proud of the result.

If you’re interested please take a browse around the documentation. The tutorial is a great place to get started.

There’s also a live sandbox version of the tutorial API [http://restframework.herokuapp.com/] available for testing.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/3.1-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 3.1

The 3.1 release is an intermediate step in the Kickstarter project releases, and includes a range of new functionality.

Some highlights include:

		A super-smart cursor pagination scheme.

		An improved pagination API, supporting header or in-body pagination styles.

		Pagination controls rendering in the browsable API.

		Better support for API versioning.

		Built-in internationalization support.

		Support for Django 1.8’s HStoreField and ArrayField.

Pagination

The pagination API has been improved, making it both easier to use, and more powerful.

A guide to the headline features follows. For full details, see the pagination documentation.

Note that as a result of this work a number of settings keys and generic view attributes are now moved to pending deprecation. Controlling pagination styles is now largely handled by overriding a pagination class and modifying its configuration attributes.

		The PAGINATE_BY settings key will continue to work but is now pending deprecation. The more obviously named PAGE_SIZE settings key should now be used instead.

		The PAGINATE_BY_PARAM, MAX_PAGINATE_BY settings keys will continue to work but are now pending deprecation, in favor of setting configuration attributes on the configured pagination class.

		The paginate_by, page_query_param, paginate_by_param and max_paginate_by generic view attributes will continue to work but are now pending deprecation, in favor of setting configuration attributes on the configured pagination class.

		The pagination_serializer_class view attribute and DEFAULT_PAGINATION_SERIALIZER_CLASS settings key are no longer valid. The pagination API does not use serializers to determine the output format, and you’ll need to instead override the get_paginated_response method on a pagination class in order to specify how the output format is controlled.

New pagination schemes.

Until now, there has only been a single built-in pagination style in REST framework. We now have page, limit/offset and cursor based schemes included by default.

The cursor based pagination scheme is particularly smart, and is a better approach for clients iterating through large or frequently changing result sets. The scheme supports paging against non-unique indexes, by using both cursor and limit/offset information. It also allows for both forward and reverse cursor pagination. Much credit goes to David Cramer for this blog post [http://cramer.io/2011/03/08/building-cursors-for-the-disqus-api/] on the subject.

Pagination controls in the browsable API.

Paginated results now include controls that render directly in the browsable API. If you’re using the page or limit/offset style, then you’ll see a page based control displayed in the browsable API:

[image: page number based pagination]

The cursor based pagination renders a more simple style of control:

[image: cursor based pagination]

Support for header-based pagination.

The pagination API was previously only able to alter the pagination style in the body of the response. The API now supports being able to write pagination information in response headers, making it possible to use pagination schemes that use the Link or Content-Range headers.

For more information, see the custom pagination styles documentation.

Versioning

We’ve made it easier to build versioned APIs. Built-in schemes for versioning include both URL based and Accept header based variations.

When using a URL based scheme, hyperlinked serializers will resolve relationships to the same API version as used on the incoming request.

For example, when using NamespaceVersioning, and the following hyperlinked serializer:

class AccountsSerializer(serializer.HyperlinkedModelSerializer):
 class Meta:
 model = Accounts
 fields = ('account_name', 'users')

The output representation would match the version used on the incoming request. Like so:

GET http://example.org/v2/accounts/10 # Version 'v2'

{
 "account_name": "europa",
 "users": [
 "http://example.org/v2/users/12", # Version 'v2'
 "http://example.org/v2/users/54",
 "http://example.org/v2/users/87"
]
}

Internationalization

REST framework now includes a built-in set of translations, and supports internationalized error responses. This allows you to either change the default language, or to allow clients to specify the language via the Accept-Language header.

You can change the default language by using the standard Django LANGUAGE_CODE setting:

LANGUAGE_CODE = "es-es"

You can turn on per-request language requests by adding LocalMiddleware to your MIDDLEWARE_CLASSES setting:

MIDDLEWARE_CLASSES = [
 ...
 'django.middleware.locale.LocaleMiddleware'
]

When per-request internationalization is enabled, client requests will respect the Accept-Language header where possible. For example, let’s make a request for an unsupported media type:

Request

GET /api/users HTTP/1.1
Accept: application/xml
Accept-Language: es-es
Host: example.org

Response

HTTP/1.0 406 NOT ACCEPTABLE

{
 "detail": "No se ha podido satisfacer la solicitud de cabecera de Accept."
}

Note that the structure of the error responses is still the same. We still have a details key in the response. If needed you can modify this behavior too, by using a custom exception handler.

We include built-in translations both for standard exception cases, and for serializer validation errors.

The full list of supported languages can be found on our Transifex project page [https://www.transifex.com/projects/p/django-rest-framework/].

If you only wish to support a subset of the supported languages, use Django’s standard LANGUAGES setting:

LANGUAGES = [
 ('de', _('German')),
 ('en', _('English')),
]

For more details, see the internationalization documentation.

Many thanks to Craig Blaszczyk [https://github.com/jakul] for helping push this through.

New field types

Django 1.8’s new ArrayField, HStoreField and UUIDField are now all fully supported.

This work also means that we now have both serializers.DictField(), and serializers.ListField() types, allowing you to express and validate a wider set of representations.

If you’re building a new 1.8 project, then you should probably consider using UUIDField as the primary keys for all your models. This style will work automatically with hyperlinked serializers, returning URLs in the following style:

http://example.org/api/purchases/9b1a433f-e90d-4948-848b-300fdc26365d

ModelSerializer API

The serializer redesign in 3.0 did not include any public API for modifying how ModelSerializer classes automatically generate a set of fields from a given mode class. We’ve now re-introduced an API for this, allowing you to create new ModelSerializer base classes that behave differently, such as using a different default style for relationships.

For more information, see the documentation on customizing field mappings for ModelSerializer classes.

Moving packages out of core

We’ve now moved a number of packages out of the core of REST framework, and into separately installable packages. If you’re currently using these you don’t need to worry, you simply need to pip install the new packages, and change any import paths.

We’re making this change in order to help distribute the maintainance workload, and keep better focus of the core essentials of the framework.

The change also means we can be more flexible with which external packages we recommend. For example, the excellently maintained Django OAuth toolkit [https://github.com/evonove/django-oauth-toolkit] has now been promoted as our recommended option for integrating OAuth support.

The following packages are now moved out of core and should be separately installed:

		OAuth - djangorestframework-oauth [http://jpadilla.github.io/django-rest-framework-oauth/]

		XML - djangorestframework-xml [http://jpadilla.github.io/django-rest-framework-xml]

		YAML - djangorestframework-yaml [http://jpadilla.github.io/django-rest-framework-yaml]

		JSONP - djangorestframework-jsonp [http://jpadilla.github.io/django-rest-framework-jsonp]

It’s worth reiterating that this change in policy shouldn’t mean any work in your codebase other than adding a new requirement and modifying some import paths. For example to install XML rendering, you would now do:

pip install djangorestframework-xml

And modify your settings, like so:

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': [
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer',
 'rest_framework_xml.renderers.XMLRenderer'
]
}

Thanks go to the latest member of our maintenance team, José Padilla [https://github.com/jpadilla/], for handling this work and taking on ownership of these packages.

Deprecations

The request.DATA, request.FILES and request.QUERY_PARAMS attributes move from pending deprecation, to deprecated. Use request.data and request.query_params instead, as discussed in the 3.0 release notes.

The ModelSerializer Meta options for write_only_fields, view_name and lookup_field are also moved from pending deprecation, to deprecated. Use extra_kwargs instead, as discussed in the 3.0 release notes.

All these attributes and options will still work in 3.1, but their usage will raise a warning. They will be fully removed in 3.2.

What’s next?

The next focus will be on HTML renderings of API output and will include:

		HTML form rendering of serializers.

		Filtering controls built-in to the browsable API.

		An alternative admin-style interface.

This will either be made as a single 3.2 release, or split across two separate releases, with the HTML forms and filter controls coming in 3.2, and the admin-style interface coming in a 3.3 release.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/3.2-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 3.2

The 3.2 release is the first version to include an admin interface for the browsable API.

[image: The AdminRenderer]

This interface is intended to act as a more user-friendly interface to the API. It can be used either as a replacement to the existing BrowsableAPIRenderer, or used together with it, allowing you to switch between the two styles as required.

We’ve also fixed a huge number of issues, and made numerous cleanups and improvements.

Over the course of the 3.1.x series we’ve resolved nearly 600 tickets [https://github.com/tomchristie/django-rest-framework/issues?utf8=%E2%9C%93&q=closed%3A%3E2015-03-05] on our GitHub issue tracker. This means we’re currently running at a rate of closing around 100 issues or pull requests per month.

None of this would have been possible without the support of our wonderful Kickstarter backers. If you’re looking for a job in Django development we’d strongly recommend taking a look through our sponsors [http://www.django-rest-framework.org/topics/kickstarter-announcement/#sponsors] and finding out who’s hiring.

AdminRenderer

To include AdminRenderer simply add it to your settings:

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': [
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.AdminRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer'
],
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',
 'PAGE_SIZE': 100
}

There are some limitations to the AdminRenderer, in particular it is not yet able to handle list or dictionary inputs, as we do not have any HTML form fields that support those.

Also note that this is an initial release and we do not yet have a public API for modifying the behavior or documentation on overriding the templates.

The idea is to get this released to users early, so we can start getting feedback and release a more fully featured version in 3.3.

Supported versions

This release drops support for Django 1.4.

Our supported Django versions are now 1.5.6+, 1.6.3+, 1.7 and 1.8.

Deprecations

There are no new deprecations in 3.2, although a number of existing deprecations have now escalated in line with our deprecation policy.

		request.DATA was put on the deprecation path in 3.0. It has now been removed and its usage will result in an error. Use the more pythonic style of request.data instead.

		request.QUERY_PARAMS was put on the deprecation path in 3.0. It has now been removed and its usage will result in an error. Use the more pythonic style of request.query_params instead.

		The following ModelSerializer.Meta options have now been removed: write_only_fields, view_name, lookup_field. Use the more general extra_kwargs option instead.

The following pagination view attributes and settings have been moved into attributes on the pagination class since 3.1. Their usage was formerly in ‘pending deprecation’, and has now escalated to ‘deprecated’. They will continue to function but will raise errors.

		view.paginate_by - Use paginator.page_size instead.

		view.page_query_param - Use paginator.page_query_param instead.

		view.paginate_by_param - Use paginator.page_size_query_param instead.

		view.max_paginate_by - Use paginator.max_page_size instead.

		settings.PAGINATE_BY - Use paginator.page_size instead.

		settings.PAGINATE_BY_PARAM - Use paginator.page_size_query_param instead.

		settings.MAX_PAGINATE_BY - Use max_page_size instead.

Modifications to list behaviors

There are a couple of bug fixes that are worth calling out as they introduce differing behavior.

These are a little subtle and probably won’t affect most users, but are worth understanding before upgrading your project.

ManyToMany fields and blank=True

We’ve now added an allow_empty argument, which can be used with ListSerializer, or with many=True relationships. This is True by default, but can be set to False if you want to disallow empty lists as valid input.

As a follow-up to this we are now able to properly mirror the behavior of Django’s ModelForm with respect to how many-to-many fields are validated.

Previously a many-to-many field on a model would map to a serializer field that would allow either empty or non-empty list inputs. Now, a many-to-many field will map to a serializer field that requires at least one input, unless the model field has blank=True set.

Here’s what the mapping looks like in practice:

		models.ManyToManyField() → serializers.PrimaryKeyRelatedField(many=True, allow_empty=False)

		models.ManyToManyField(blank=True) → serializers.PrimaryKeyRelatedField(many=True)

The upshot is this: If you have many to many fields in your models, then make sure you’ve included the argument blank=True if you want to allow empty inputs in the equivalent ModelSerializer fields.

List fields and allow_null

When using allow_null with ListField or a nested many=True serializer the previous behavior was to allow null values as items in the list. The behavior is now to allow null values instead of the list.

For example, take the following field:

NestedSerializer(many=True, allow_null=True)

Previously the validation behavior would be:

		[{…}, null, {…}] is valid.

		null is invalid.

Our validation behavior as of 3.2.0 is now:

		[{…}, null, {…}] is invalid.

		null is valid.

If you want to allow null child items, you’ll need to instead specify allow_null on the child class, using an explicit ListField instead of many=True. For example:

ListField(child=NestedSerializer(allow_null=True))

What’s next?

The 3.3 release is currently planned for the start of October, and will be the last Kickstarter-funded release.

This release is planned to include:

		Search and filtering controls in the browsable API and admin interface.

		Improvements and public API for the admin interface.

		Improvements and public API for our templated HTML forms and fields.

		Nested object and list support in HTML forms.

Thanks once again to all our sponsors and supporters.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/validators.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: validators.py

Validators

Validators can be useful for re-using validation logic between different types of fields.

—

 Django documentation [https://docs.djangoproject.com/en/dev/ref/validators/]

Most of the time you’re dealing with validation in REST framework you’ll simply be relying on the default field validation, or writing explicit validation methods on serializer or field classes.

However, sometimes you’ll want to place your validation logic into reusable components, so that it can easily be reused throughout your codebase. This can be achieved by using validator functions and validator classes.

Validation in REST framework

Validation in Django REST framework serializers is handled a little differently to how validation works in Django’s ModelForm class.

With ModelForm the validation is performed partially on the form, and partially on the model instance. With REST framework the validation is performed entirely on the serializer class. This is advantageous for the following reasons:

		It introduces a proper separation of concerns, making your code behavior more obvious.

		It is easy to switch between using shortcut ModelSerializer classes and using explicit Serializer classes. Any validation behavior being used for ModelSerializer is simple to replicate.

		Printing the repr of a serializer instance will show you exactly what validation rules it applies. There’s no extra hidden validation behavior being called on the model instance.

When you’re using ModelSerializer all of this is handled automatically for you. If you want to drop down to using a Serializer classes instead, then you need to define the validation rules explicitly.

Example

As an example of how REST framework uses explicit validation, we’ll take a simple model class that has a field with a uniqueness constraint.

class CustomerReportRecord(models.Model):
 time_raised = models.DateTimeField(default=timezone.now, editable=False)
 reference = models.CharField(unique=True, max_length=20)
 description = models.TextField()

Here’s a basic ModelSerializer that we can use for creating or updating instances of CustomerReportRecord:

class CustomerReportSerializer(serializers.ModelSerializer):
 class Meta:
 model = CustomerReportRecord

If we open up the Django shell using manage.py shell we can now

>>> from project.example.serializers import CustomerReportSerializer
>>> serializer = CustomerReportSerializer()
>>> print(repr(serializer))
CustomerReportSerializer():
 id = IntegerField(label='ID', read_only=True)
 time_raised = DateTimeField(read_only=True)
 reference = CharField(max_length=20, validators=[<UniqueValidator(queryset=CustomerReportRecord.objects.all())>])
 description = CharField(style={'type': 'textarea'})

The interesting bit here is the reference field. We can see that the uniqueness constraint is being explicitly enforced by a validator on the serializer field.

Because of this more explicit style REST framework includes a few validator classes that are not available in core Django. These classes are detailed below.

UniqueValidator

This validator can be used to enforce the unique=True constraint on model fields.
It takes a single required argument, and an optional messages argument:

		queryset required - This is the queryset against which uniqueness should be enforced.

		message - The error message that should be used when validation fails.

This validator should be applied to serializer fields, like so:

slug = SlugField(
 max_length=100,
 validators=[UniqueValidator(queryset=BlogPost.objects.all())]
)

UniqueTogetherValidator

This validator can be used to enforce unique_together constraints on model instances.
It has two required arguments, and a single optional messages argument:

		queryset required - This is the queryset against which uniqueness should be enforced.

		fields required - A list or tuple of field names which should make a unique set. These must exist as fields on the serializer class.

		message - The error message that should be used when validation fails.

The validator should be applied to serializer classes, like so:

class ExampleSerializer(serializers.Serializer):
 # ...
 class Meta:
 # ToDo items belong to a parent list, and have an ordering defined
 # by the 'position' field. No two items in a given list may share
 # the same position.
 validators = [
 UniqueTogetherValidator(
 queryset=ToDoItem.objects.all(),
 fields=('list', 'position')
)
]

Note: The UniqueTogetherValidation class always imposes an implicit constraint that all the fields it applies to are always treated as required. Fields with default values are an exception to this as they always supply a value even when omitted from user input.

UniqueForDateValidator

UniqueForMonthValidator

UniqueForYearValidator

These validators can be used to enforce the unique_for_date, unique_for_month and unique_for_year constraints on model instances. They take the following arguments:

		queryset required - This is the queryset against which uniqueness should be enforced.

		field required - A field name against which uniqueness in the given date range will be validated. This must exist as a field on the serializer class.

		date_field required - A field name which will be used to determine date range for the uniqueness constrain. This must exist as a field on the serializer class.

		message - The error message that should be used when validation fails.

The validator should be applied to serializer classes, like so:

class ExampleSerializer(serializers.Serializer):
 # ...
 class Meta:
 # Blog posts should have a slug that is unique for the current year.
 validators = [
 UniqueForYearValidator(
 queryset=BlogPostItem.objects.all(),
 field='slug',
 date_field='published'
)
]

The date field that is used for the validation is always required to be present on the serializer class. You can’t simply rely on a model class default=..., because the value being used for the default wouldn’t be generated until after the validation has run.

There are a couple of styles you may want to use for this depending on how you want your API to behave. If you’re using ModelSerializer you’ll probably simply rely on the defaults that REST framework generates for you, but if you are using Serializer or simply want more explicit control, use on of the styles demonstrated below.

Using with a writable date field.

If you want the date field to be writable the only thing worth noting is that you should ensure that it is always available in the input data, either by setting a default argument, or by setting required=True.

published = serializers.DateTimeField(required=True)

Using with a read-only date field.

If you want the date field to be visible, but not editable by the user, then set read_only=True and additionally set a default=... argument.

published = serializers.DateTimeField(read_only=True, default=timezone.now)

The field will not be writable to the user, but the default value will still be passed through to the validated_data.

Using with a hidden date field.

If you want the date field to be entirely hidden from the user, then use HiddenField. This field type does not accept user input, but instead always returns it’s default value to the validated_data in the serializer.

published = serializers.HiddenField(default=timezone.now)

Note: The UniqueFor<Range>Validation classes always imposes an implicit constraint that the fields they are applied to are always treated as required. Fields with default values are an exception to this as they always supply a value even when omitted from user input.

Advanced ‘default’ argument usage

Validators that are applied across multiple fields in the serializer can sometimes require a field input that should not be provided by the API client, but that is available as input to the validator.

Two patterns that you may want to use for this sort of validation include:

		Using HiddenField. This field will be present in validated_data but will not be used in the serializer output representation.

		Using a standard field with read_only=True, but that also includes a default=… argument. This field will be used in the serializer output representation, but cannot be set directly by the user.

REST framework includes a couple of defaults that may be useful in this context.

CurrentUserDefault

A default class that can be used to represent the current user. In order to use this, the ‘request’ must have been provided as part of the context dictionary when instantiating the serializer.

owner = serializers.HiddenField(
 default=serializers.CurrentUserDefault()
)

CreateOnlyDefault

A default class that can be used to only set a default argument during create operations. During updates the field is omitted.

It takes a single argument, which is the default value or callable that should be used during create operations.

created_at = serializers.DateTimeField(
 read_only=True,
 default=CreateOnlyDefault(timezone.now)
)

Writing custom validators

You can use any of Django’s existing validators, or write your own custom validators.

Function based

A validator may be any callable that raises a serializers.ValidationError on failure.

def even_number(value):
 if value % 2 != 0:
 raise serializers.ValidationError('This field must be an even number.')

Class based

To write a class based validator, use the __call__ method. Class based validators are useful as they allow you to parameterize and reuse behavior.

class MultipleOf(object):
 def __init__(self, base):
 self.base = base

 def __call__(self, value):
 if value % self.base != 0:
 message = 'This field must be a multiple of %d.' % self.base
 raise serializers.ValidationError(message)

Using set_context()

In some advanced cases you might want a validator to be passed the serializer field it is being used with as additional context. You can do so by declaring a set_context method on a class based validator.

def set_context(self, serializer_field):
 # Determine if this is an update or a create operation.
 # In `__call__` we can then use that information to modify the validation behavior.
 self.is_update = serializer_field.parent.instance is not None

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/fields.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: fields.py

Serializer fields

Each field in a Form class is responsible not only for validating data, but also for “cleaning” it

—

 normalizing it to a consistent format.

—

 Django documentation [https://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form.cleaned_data]

Serializer fields handle converting between primitive values and internal datatypes. They also deal with validating input values, as well as retrieving and setting the values from their parent objects.

Note: The serializer fields are declared in fields.py, but by convention you should import them using from rest_framework import serializers and refer to fields as serializers.<FieldName>.

Core arguments

Each serializer field class constructor takes at least these arguments. Some Field classes take additional, field-specific arguments, but the following should always be accepted:

read_only

Read-only fields are included in the API output, but should not be included in the input during create or update operations. Any ‘read_only’ fields that are incorrectly included in the serializer input will be ignored.

Set this to True to ensure that the field is used when serializing a representation, but is not used when creating or updating an instance during deserialization.

Defaults to False

write_only

Set this to True to ensure that the field may be used when updating or creating an instance, but is not included when serializing the representation.

Defaults to False

required

Normally an error will be raised if a field is not supplied during deserialization.
Set to false if this field is not required to be present during deserialization.

Setting this to False also allows the object attribute or dictionary key to be omitted from output when serializing the instance. If the key is not present it will simply not be included in the output representation.

Defaults to True.

allow_null

Normally an error will be raised if None is passed to a serializer field. Set this keyword argument to True if None should be considered a valid value.

Defaults to False

default

If set, this gives the default value that will be used for the field if no input value is supplied. If not set the default behavior is to not populate the attribute at all.

May be set to a function or other callable, in which case the value will be evaluated each time it is used. When called, it will receive no arguments. If the callable has a set_context method, that will be called each time before getting the value with the field instance as only argument. This works the same way as for validators.

Note that setting a default value implies that the field is not required. Including both the default and required keyword arguments is invalid and will raise an error.

source

The name of the attribute that will be used to populate the field. May be a method that only takes a self argument, such as URLField(source='get_absolute_url'), or may use dotted notation to traverse attributes, such as EmailField(source='user.email').

The value source='*' has a special meaning, and is used to indicate that the entire object should be passed through to the field. This can be useful for creating nested representations, or for fields which require access to the complete object in order to determine the output representation.

Defaults to the name of the field.

validators

A list of validator functions which should be applied to the incoming field input, and which either raise a validation error or simply return. Validator functions should typically raise serializers.ValidationError, but Django’s built-in ValidationError is also supported for compatibility with validators defined in the Django codebase or third party Django packages.

error_messages

A dictionary of error codes to error messages.

label

A short text string that may be used as the name of the field in HTML form fields or other descriptive elements.

help_text

A text string that may be used as a description of the field in HTML form fields or other descriptive elements.

initial

A value that should be used for pre-populating the value of HTML form fields.

style

A dictionary of key-value pairs that can be used to control how renderers should render the field.

Two examples here are 'input_type' and 'base_template':

Use <input type="password"> for the input.
password = serializers.CharField(
 style={'input_type': 'password'}
)

Use a radio input instead of a select input.
color_channel = serializers.ChoiceField(
 choices=['red', 'green', 'blue']
 style = {'base_template': 'radio.html'}
}

For more details see the HTML & Forms documentation.

Boolean fields

BooleanField

A boolean representation.

When using HTML encoded form input be aware that omitting a value will always be treated as setting a field to False, even if it has a default=True option specified. This is because HTML checkbox inputs represent the unchecked state by omitting the value, so REST framework treats omission as if it is an empty checkbox input.

Corresponds to django.db.models.fields.BooleanField.

Signature: BooleanField()

NullBooleanField

A boolean representation that also accepts None as a valid value.

Corresponds to django.db.models.fields.NullBooleanField.

Signature: NullBooleanField()

String fields

CharField

A text representation. Optionally validates the text to be shorter than max_length and longer than min_length.

Corresponds to django.db.models.fields.CharField or django.db.models.fields.TextField.

Signature: CharField(max_length=None, min_length=None, allow_blank=False, trim_whitespace=True)

		max_length - Validates that the input contains no more than this number of characters.

		min_length - Validates that the input contains no fewer than this number of characters.

		allow_blank - If set to True then the empty string should be considered a valid value. If set to False then the empty string is considered invalid and will raise a validation error. Defaults to False.

		trim_whitespace - If set to True then leading and trailing whitespace is trimmed. Defaults to True.

The allow_null option is also available for string fields, although its usage is discouraged in favor of allow_blank. It is valid to set both allow_blank=True and allow_null=True, but doing so means that there will be two differing types of empty value permissible for string representations, which can lead to data inconsistencies and subtle application bugs.

EmailField

A text representation, validates the text to be a valid e-mail address.

Corresponds to django.db.models.fields.EmailField

Signature: EmailField(max_length=None, min_length=None, allow_blank=False)

RegexField

A text representation, that validates the given value matches against a certain regular expression.

Corresponds to django.forms.fields.RegexField.

Signature: RegexField(regex, max_length=None, min_length=None, allow_blank=False)

The mandatory regex argument may either be a string, or a compiled python regular expression object.

Uses Django’s django.core.validators.RegexValidator for validation.

SlugField

A RegexField that validates the input against the pattern [a-zA-Z0-9_-]+.

Corresponds to django.db.models.fields.SlugField.

Signature: SlugField(max_length=50, min_length=None, allow_blank=False)

URLField

A RegexField that validates the input against a URL matching pattern. Expects fully qualified URLs of the form http://<host>/<path>.

Corresponds to django.db.models.fields.URLField. Uses Django’s django.core.validators.URLValidator for validation.

Signature: URLField(max_length=200, min_length=None, allow_blank=False)

UUIDField

A field that ensures the input is a valid UUID string. The to_internal_value method will return a uuid.UUID instance. On output the field will return a string in the canonical hyphenated format, for example:

"de305d54-75b4-431b-adb2-eb6b9e546013"

Signature: UUIDField(format='hex_verbose')

		format: Determines the representation format of the uuid value
		'hex_verbose' - The cannoncical hex representation, including hyphens: "5ce0e9a5-5ffa-654b-cee0-1238041fb31a"

		'hex' - The compact hex representation of the UUID, not including hyphens: "5ce0e9a55ffa654bcee01238041fb31a"

		'int' - A 128 bit integer representation of the UUID: "123456789012312313134124512351145145114"

		'urn' - RFC 4122 URN representation of the UUID: "urn:uuid:5ce0e9a5-5ffa-654b-cee0-1238041fb31a"
Changing the format parameters only affects representation values. All formats are accepted by to_internal_value

FilePathField

A field whose choices are limited to the filenames in a certain directory on the filesystem

Corresponds to django.forms.fields.FilePathField.

Signature: FilePathField(path, match=None, recursive=False, allow_files=True, allow_folders=False, required=None, **kwargs)

		path - The absolute filesystem path to a directory from which this FilePathField should get its choice.

		match - A regular expression, as a string, that FilePathField will use to filter filenames.

		recursive - Specifies whether all subdirectories of path should be included. Default is False.

		allow_files - Specifies whether files in the specified location should be included. Default is True. Either this or allow_folders must be True.

		allow_folders - Specifies whether folders in the specified location should be included. Default is False. Either this or allow_files must be True.

IPAddressField

A field that ensures the input is a valid IPv4 or IPv6 string.

Corresponds to django.forms.fields.IPAddressField and django.forms.fields.GenericIPAddressField.

Signature: IPAddressField(protocol='both', unpack_ipv4=False, **options)

		protocol Limits valid inputs to the specified protocol. Accepted values are ‘both’ (default), ‘IPv4’ or ‘IPv6’. Matching is case insensitive.

		unpack_ipv4 Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that address would be unpacked to 192.0.2.1. Default is disabled. Can only be used when protocol is set to ‘both’.

Numeric fields

IntegerField

An integer representation.

Corresponds to django.db.models.fields.IntegerField, django.db.models.fields.SmallIntegerField, django.db.models.fields.PositiveIntegerField and django.db.models.fields.PositiveSmallIntegerField.

Signature: IntegerField(max_value=None, min_value=None)

		max_value Validate that the number provided is no greater than this value.

		min_value Validate that the number provided is no less than this value.

FloatField

A floating point representation.

Corresponds to django.db.models.fields.FloatField.

Signature: FloatField(max_value=None, min_value=None)

		max_value Validate that the number provided is no greater than this value.

		min_value Validate that the number provided is no less than this value.

DecimalField

A decimal representation, represented in Python by a Decimal instance.

Corresponds to django.db.models.fields.DecimalField.

Signature: DecimalField(max_digits, decimal_places, coerce_to_string=None, max_value=None, min_value=None)

		max_digits The maximum number of digits allowed in the number. Note that this number must be greater than or equal to decimal_places.

		decimal_places The number of decimal places to store with the number.

		coerce_to_string Set to True if string values should be returned for the representation, or False if Decimal objects should be returned. Defaults to the same value as the COERCE_DECIMAL_TO_STRING settings key, which will be True unless overridden. If Decimal objects are returned by the serializer, then the final output format will be determined by the renderer.

		max_value Validate that the number provided is no greater than this value.

		min_value Validate that the number provided is no less than this value.

Example usage

To validate numbers up to 999 with a resolution of 2 decimal places, you would use:

serializers.DecimalField(max_digits=5, decimal_places=2)

And to validate numbers up to anything less than one billion with a resolution of 10 decimal places:

serializers.DecimalField(max_digits=19, decimal_places=10)

This field also takes an optional argument, coerce_to_string. If set to True the representation will be output as a string. If set to False the representation will be left as a Decimal instance and the final representation will be determined by the renderer.

If unset, this will default to the same value as the COERCE_DECIMAL_TO_STRING setting, which is True unless set otherwise.

Date and time fields

DateTimeField

A date and time representation.

Corresponds to django.db.models.fields.DateTimeField.

Signature: DateTimeField(format=None, input_formats=None)

		format - A string representing the output format. If not specified, this defaults to the same value as the DATETIME_FORMAT settings key, which will be 'iso-8601' unless set. Setting to a format string indicates that to_representation return values should be coerced to string output. Format strings are described below. Setting this value to None indicates that Python datetime objects should be returned by to_representation. In this case the datetime encoding will be determined by the renderer.

		input_formats - A list of strings representing the input formats which may be used to parse the date. If not specified, the DATETIME_INPUT_FORMATS setting will be used, which defaults to ['iso-8601'].

DateTimeField format strings.

Format strings may either be Python strftime formats [http://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] which explicitly specify the format, or the special string 'iso-8601', which indicates that ISO 8601 [http://www.w3.org/TR/NOTE-datetime] style datetimes should be used. (eg '2013-01-29T12:34:56.000000Z')

When a value of None is used for the format datetime objects will be returned by to_representation and the final output representation will determined by the renderer class.

In the case of JSON this means the default datetime representation uses the ECMA 262 date time string specification [http://ecma-international.org/ecma-262/5.1/#sec-15.9.1.15]. This is a subset of ISO 8601 which uses millisecond precision, and includes the ‘Z’ suffix for the UTC timezone, for example: 2013-01-29T12:34:56.123Z.

auto_now and auto_now_add model fields.

When using ModelSerializer or HyperlinkedModelSerializer, note that any model fields with auto_now=True or auto_now_add=True will use serializer fields that are read_only=True by default.

If you want to override this behavior, you’ll need to declare the DateTimeField explicitly on the serializer. For example:

class CommentSerializer(serializers.ModelSerializer):
 created = serializers.DateTimeField()

 class Meta:
 model = Comment

DateField

A date representation.

Corresponds to django.db.models.fields.DateField

Signature: DateField(format=None, input_formats=None)

		format - A string representing the output format. If not specified, this defaults to the same value as the DATE_FORMAT settings key, which will be 'iso-8601' unless set. Setting to a format string indicates that to_representation return values should be coerced to string output. Format strings are described below. Setting this value to None indicates that Python date objects should be returned by to_representation. In this case the date encoding will be determined by the renderer.

		input_formats - A list of strings representing the input formats which may be used to parse the date. If not specified, the DATE_INPUT_FORMATS setting will be used, which defaults to ['iso-8601'].

DateField format strings

Format strings may either be Python strftime formats [http://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] which explicitly specify the format, or the special string 'iso-8601', which indicates that ISO 8601 [http://www.w3.org/TR/NOTE-datetime] style dates should be used. (eg '2013-01-29')

TimeField

A time representation.

Corresponds to django.db.models.fields.TimeField

Signature: TimeField(format=None, input_formats=None)

		format - A string representing the output format. If not specified, this defaults to the same value as the TIME_FORMAT settings key, which will be 'iso-8601' unless set. Setting to a format string indicates that to_representation return values should be coerced to string output. Format strings are described below. Setting this value to None indicates that Python time objects should be returned by to_representation. In this case the time encoding will be determined by the renderer.

		input_formats - A list of strings representing the input formats which may be used to parse the date. If not specified, the TIME_INPUT_FORMATS setting will be used, which defaults to ['iso-8601'].

TimeField format strings

Format strings may either be Python strftime formats [http://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] which explicitly specify the format, or the special string 'iso-8601', which indicates that ISO 8601 [http://www.w3.org/TR/NOTE-datetime] style times should be used. (eg '12:34:56.000000')

DurationField

A Duration representation.
Corresponds to django.db.models.fields.DurationField

The validated_data for these fields will contain a datetime.timedelta instance.
The representation is a string following this format '[DD] [HH:[MM:]]ss[.uuuuuu]'.

Note: This field is only available with Django versions >= 1.8.

Signature: DurationField()

Choice selection fields

ChoiceField

A field that can accept a value out of a limited set of choices.

Used by ModelSerializer to automatically generate fields if the corresponding model field includes a choices=… argument.

Signature: ChoiceField(choices)

		choices - A list of valid values, or a list of (key, display_name) tuples.

		allow_blank - If set to True then the empty string should be considered a valid value. If set to False then the empty string is considered invalid and will raise a validation error. Defaults to False.

		html_cutoff - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to None.

		html_cutoff_text - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to "More than {count} items…"

Both the allow_blank and allow_null are valid options on ChoiceField, although it is highly recommended that you only use one and not both. allow_blank should be preferred for textual choices, and allow_null should be preferred for numeric or other non-textual choices.

MultipleChoiceField

A field that can accept a set of zero, one or many values, chosen from a limited set of choices. Takes a single mandatory argument. to_internal_value returns a set containing the selected values.

Signature: MultipleChoiceField(choices)

		choices - A list of valid values, or a list of (key, display_name) tuples.

		allow_blank - If set to True then the empty string should be considered a valid value. If set to False then the empty string is considered invalid and will raise a validation error. Defaults to False.

		html_cutoff - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to None.

		html_cutoff_text - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to "More than {count} items…"

As with ChoiceField, both the allow_blank and allow_null options are valid, although it is highly recommended that you only use one and not both. allow_blank should be preferred for textual choices, and allow_null should be preferred for numeric or other non-textual choices.

File upload fields

Parsers and file uploads.

The FileField and ImageField classes are only suitable for use with MultiPartParser or FileUploadParser. Most parsers, such as e.g. JSON don’t support file uploads.
Django’s regular FILE_UPLOAD_HANDLERS [https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FILE_UPLOAD_HANDLERS] are used for handling uploaded files.

FileField

A file representation. Performs Django’s standard FileField validation.

Corresponds to django.forms.fields.FileField.

Signature: FileField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)

		max_length - Designates the maximum length for the file name.

		allow_empty_file - Designates if empty files are allowed.

		use_url - If set to True then URL string values will be used for the output representation. If set to False then filename string values will be used for the output representation. Defaults to the value of the UPLOADED_FILES_USE_URL settings key, which is True unless set otherwise.

ImageField

An image representation. Validates the uploaded file content as matching a known image format.

Corresponds to django.forms.fields.ImageField.

Signature: ImageField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)

		max_length - Designates the maximum length for the file name.

		allow_empty_file - Designates if empty files are allowed.

		use_url - If set to True then URL string values will be used for the output representation. If set to False then filename string values will be used for the output representation. Defaults to the value of the UPLOADED_FILES_USE_URL settings key, which is True unless set otherwise.

Requires either the Pillow package or PIL package. The Pillow package is recommended, as PIL is no longer actively maintained.

Composite fields

ListField

A field class that validates a list of objects.

Signature: ListField(child)

		child - A field instance that should be used for validating the objects in the list. If this argument is not provided then objects in the list will not be validated.

For example, to validate a list of integers you might use something like the following:

scores = serializers.ListField(
 child=serializers.IntegerField(min_value=0, max_value=100)
)

The ListField class also supports a declarative style that allows you to write reusable list field classes.

class StringListField(serializers.ListField):
 child = serializers.CharField()

We can now reuse our custom StringListField class throughout our application, without having to provide a child argument to it.

DictField

A field class that validates a dictionary of objects. The keys in DictField are always assumed to be string values.

Signature: DictField(child)

		child - A field instance that should be used for validating the values in the dictionary. If this argument is not provided then values in the mapping will not be validated.

For example, to create a field that validates a mapping of strings to strings, you would write something like this:

document = DictField(child=CharField())

You can also use the declarative style, as with ListField. For example:

class DocumentField(DictField):
 child = CharField()

JSONField

A field class that validates that the incoming data structure consists of valid JSON primitives. In its alternate binary mode, it will represent and validate JSON-encoded binary strings.

Signature: JSONField(binary)

		binary - If set to True then the field will output and validate a JSON encoded string, rather that a primitive data structure. Defaults to False.

Miscellaneous fields

ReadOnlyField

A field class that simply returns the value of the field without modification.

This field is used by default with ModelSerializer when including field names that relate to an attribute rather than a model field.

Signature: ReadOnlyField()

For example, is has_expired was a property on the Account model, then the following serializer would automatically generate it as a ReadOnlyField:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = ('id', 'account_name', 'has_expired')

HiddenField

A field class that does not take a value based on user input, but instead takes its value from a default value or callable.

Signature: HiddenField()

For example, to include a field that always provides the current time as part of the serializer validated data, you would use the following:

modified = serializers.HiddenField(default=timezone.now)

The HiddenField class is usually only needed if you have some validation that needs to run based on some pre-provided field values, but you do not want to expose all of those fields to the end user.

For further examples on HiddenField see the validators documentation.

ModelField

A generic field that can be tied to any arbitrary model field. The ModelField class delegates the task of serialization/deserialization to its associated model field. This field can be used to create serializer fields for custom model fields, without having to create a new custom serializer field.

This field is used by ModelSerializer to correspond to custom model field classes.

Signature: ModelField(model_field=<Django ModelField instance>)

The ModelField class is generally intended for internal use, but can be used by your API if needed. In order to properly instantiate a ModelField, it must be passed a field that is attached to an instantiated model. For example: ModelField(model_field=MyModel()._meta.get_field('custom_field'))

SerializerMethodField

This is a read-only field. It gets its value by calling a method on the serializer class it is attached to. It can be used to add any sort of data to the serialized representation of your object.

Signature: SerializerMethodField(method_name=None)

		method_name - The name of the method on the serializer to be called. If not included this defaults to get_<field_name>.

The serializer method referred to by the method_name argument should accept a single argument (in addition to self), which is the object being serialized. It should return whatever you want to be included in the serialized representation of the object. For example:

from django.contrib.auth.models import User
from django.utils.timezone import now
from rest_framework import serializers

class UserSerializer(serializers.ModelSerializer):
 days_since_joined = serializers.SerializerMethodField()

 class Meta:
 model = User

 def get_days_since_joined(self, obj):
 return (now() - obj.date_joined).days

Custom fields

If you want to create a custom field, you’ll need to subclass Field and then override either one or both of the .to_representation() and .to_internal_value() methods. These two methods are used to convert between the initial datatype, and a primitive, serializable datatype. Primitive datatypes will typically be any of a number, string, boolean, date/time/datetime or None. They may also be any list or dictionary like object that only contains other primitive objects. Other types might be supported, depending on the renderer that you are using.

The .to_representation() method is called to convert the initial datatype into a primitive, serializable datatype.

The to_internal_value() method is called to restore a primitive datatype into its internal python representation. This method should raise a serializers.ValidationError if the data is invalid.

Note that the WritableField class that was present in version 2.x no longer exists. You should subclass Field and override to_internal_value() if the field supports data input.

Examples

Let’s look at an example of serializing a class that represents an RGB color value:

class Color(object):
 """
 A color represented in the RGB colorspace.
 """
 def __init__(self, red, green, blue):
 assert(red >= 0 and green >= 0 and blue >= 0)
 assert(red < 256 and green < 256 and blue < 256)
 self.red, self.green, self.blue = red, green, blue

class ColorField(serializers.Field):
 """
 Color objects are serialized into 'rgb(#, #, #)' notation.
 """
 def to_representation(self, obj):
 return "rgb(%d, %d, %d)" % (obj.red, obj.green, obj.blue)

 def to_internal_value(self, data):
 data = data.strip('rgb(').rstrip(')')
 red, green, blue = [int(col) for col in data.split(',')]
 return Color(red, green, blue)

By default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override .get_attribute() and/or .get_value().

As an example, let’s create a field that can be used represent the class name of the object being serialized:

class ClassNameField(serializers.Field):
 def get_attribute(self, obj):
 # We pass the object instance onto `to_representation`,
 # not just the field attribute.
 return obj

 def to_representation(self, obj):
 """
 Serialize the object's class name.
 """
 return obj.__class__.__name__

Raising validation errors

Our ColorField class above currently does not perform any data validation.
To indicate invalid data, we should raise a serializers.ValidationError, like so:

def to_internal_value(self, data):
 if not isinstance(data, six.text_type):
 msg = 'Incorrect type. Expected a string, but got %s'
 raise ValidationError(msg % type(data).__name__)

 if not re.match(r'^rgb\([0-9]+,[0-9]+,[0-9]+\)$', data):
 raise ValidationError('Incorrect format. Expected `rgb(#,#,#)`.')

 data = data.strip('rgb(').rstrip(')')
 red, green, blue = [int(col) for col in data.split(',')]

 if any([col > 255 or col < 0 for col in (red, green, blue)]):
 raise ValidationError('Value out of range. Must be between 0 and 255.')

 return Color(red, green, blue)

The .fail() method is a shortcut for raising ValidationError that takes a message string from the error_messages dictionary. For example:

default_error_messages = {
 'incorrect_type': 'Incorrect type. Expected a string, but got {input_type}',
 'incorrect_format': 'Incorrect format. Expected `rgb(#,#,#)`.',
 'out_of_range': 'Value out of range. Must be between 0 and 255.'
}

def to_internal_value(self, data):
 if not isinstance(data, six.text_type):
 msg = 'Incorrect type. Expected a string, but got %s'
 self.fail('incorrect_type', input_type=type(data).__name__)

 if not re.match(r'^rgb\([0-9]+,[0-9]+,[0-9]+\)$', data):
 self.fail('incorrect_format')

 data = data.strip('rgb(').rstrip(')')
 red, green, blue = [int(col) for col in data.split(',')]

 if any([col > 255 or col < 0 for col in (red, green, blue)]):
 self.fail('out_of_range')

 return Color(red, green, blue)

This style keeps you error messages more cleanly separated from your code, and should be preferred.

Third party packages

The following third party packages are also available.

DRF Compound Fields

The drf-compound-fields [http://drf-compound-fields.readthedocs.org] package provides “compound” serializer fields, such as lists of simple values, which can be described by other fields rather than serializers with the many=True option. Also provided are fields for typed dictionaries and values that can be either a specific type or a list of items of that type.

DRF Extra Fields

The drf-extra-fields [https://github.com/Hipo/drf-extra-fields] package provides extra serializer fields for REST framework, including Base64ImageField and PointField classes.

djangrestframework-recursive

the djangorestframework-recursive [https://github.com/heywbj/django-rest-framework-recursive] package provides a RecursiveField for serializing and deserializing recursive structures

django-rest-framework-gis

The django-rest-framework-gis [https://github.com/djangonauts/django-rest-framework-gis] package provides geographic addons for django rest framework like a GeometryField field and a GeoJSON serializer.

django-rest-framework-hstore

The django-rest-framework-hstore [https://github.com/djangonauts/django-rest-framework-hstore] package provides an HStoreField to support django-hstore [https://github.com/djangonauts/django-hstore] DictionaryField model field.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/responses.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: response.py

Responses

Unlike basic HttpResponse objects, TemplateResponse objects retain the details of the context that was provided by the view to compute the response. The final output of the response is not computed until it is needed, later in the response process.

—

 Django documentation [https://docs.djangoproject.com/en/dev/ref/template-response/]

REST framework supports HTTP content negotiation by providing a Response class which allows you to return content that can be rendered into multiple content types, depending on the client request.

The Response class subclasses Django’s SimpleTemplateResponse. Response objects are initialised with data, which should consist of native Python primitives. REST framework then uses standard HTTP content negotiation to determine how it should render the final response content.

There’s no requirement for you to use the Response class, you can also return regular HttpResponse or StreamingHttpResponse objects from your views if required. Using the Response class simply provides a nicer interface for returning content-negotiated Web API responses, that can be rendered to multiple formats.

Unless you want to heavily customize REST framework for some reason, you should always use an APIView class or @api_view function for views that return Response objects. Doing so ensures that the view can perform content negotiation and select the appropriate renderer for the response, before it is returned from the view.

Creating responses

Response()

Signature: Response(data, status=None, template_name=None, headers=None, content_type=None)

Unlike regular HttpResponse objects, you do not instantiate Response objects with rendered content. Instead you pass in unrendered data, which may consist of any Python primitives.

The renderers used by the Response class cannot natively handle complex datatypes such as Django model instances, so you need to serialize the data into primitive datatypes before creating the Response object.

You can use REST framework’s Serializer classes to perform this data serialization, or use your own custom serialization.

Arguments:

		data: The serialized data for the response.

		status: A status code for the response. Defaults to 200. See also status codes.

		template_name: A template name to use if HTMLRenderer is selected.

		headers: A dictionary of HTTP headers to use in the response.

		content_type: The content type of the response. Typically, this will be set automatically by the renderer as determined by content negotiation, but there may be some cases where you need to specify the content type explicitly.

Attributes

.data

The unrendered content of a Request object.

.status_code

The numeric status code of the HTTP response.

.content

The rendered content of the response. The .render() method must have been called before .content can be accessed.

.template_name

The template_name, if supplied. Only required if HTMLRenderer or some other custom template renderer is the accepted renderer for the response.

.accepted_renderer

The renderer instance that will be used to render the response.

Set automatically by the APIView or @api_view immediately before the response is returned from the view.

.accepted_media_type

The media type that was selected by the content negotiation stage.

Set automatically by the APIView or @api_view immediately before the response is returned from the view.

.renderer_context

A dictionary of additional context information that will be passed to the renderer’s .render() method.

Set automatically by the APIView or @api_view immediately before the response is returned from the view.

Standard HttpResponse attributes

The Response class extends SimpleTemplateResponse, and all the usual attributes and methods are also available on the response. For example you can set headers on the response in the standard way:

response = Response()
response['Cache-Control'] = 'no-cache'

.render()

Signature: .render()

As with any other TemplateResponse, this method is called to render the serialized data of the response into the final response content. When .render() is called, the response content will be set to the result of calling the .render(data, accepted_media_type, renderer_context) method on the accepted_renderer instance.

You won’t typically need to call .render() yourself, as it’s handled by Django’s standard response cycle.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/throttling.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: throttling.py

Throttling

HTTP/1.1 420 Enhance Your Calm

Twitter API rate limiting response [https://dev.twitter.com/docs/error-codes-responses]

Throttling is similar to permissions, in that it determines if a request should be authorized. Throttles indicate a temporary state, and are used to control the rate of requests that clients can make to an API.

As with permissions, multiple throttles may be used. Your API might have a restrictive throttle for unauthenticated requests, and a less restrictive throttle for authenticated requests.

Another scenario where you might want to use multiple throttles would be if you need to impose different constraints on different parts of the API, due to some services being particularly resource-intensive.

Multiple throttles can also be used if you want to impose both burst throttling rates, and sustained throttling rates. For example, you might want to limit a user to a maximum of 60 requests per minute, and 1000 requests per day.

Throttles do not necessarily only refer to rate-limiting requests. For example a storage service might also need to throttle against bandwidth, and a paid data service might want to throttle against a certain number of a records being accessed.

How throttling is determined

As with permissions and authentication, throttling in REST framework is always defined as a list of classes.

Before running the main body of the view each throttle in the list is checked.
If any throttle check fails an exceptions.Throttled exception will be raised, and the main body of the view will not run.

Setting the throttling policy

The default throttling policy may be set globally, using the DEFAULT_THROTTLE_CLASSES and DEFAULT_THROTTLE_RATES settings. For example.

REST_FRAMEWORK = {
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.AnonRateThrottle',
 'rest_framework.throttling.UserRateThrottle'
),
 'DEFAULT_THROTTLE_RATES': {
 'anon': '100/day',
 'user': '1000/day'
 }
}

The rate descriptions used in DEFAULT_THROTTLE_RATES may include second, minute, hour or day as the throttle period.

You can also set the throttling policy on a per-view or per-viewset basis,
using the APIView class based views.

from rest_framework.response import Response
from rest_framework.throttling import UserRateThrottle
from rest_framework.views import APIView

class ExampleView(APIView):
 throttle_classes = (UserRateThrottle,)

 def get(self, request, format=None):
 content = {
 'status': 'request was permitted'
 }
 return Response(content)

Or, if you’re using the @api_view decorator with function based views.

@api_view(['GET'])
@throttle_classes([UserRateThrottle])
def example_view(request, format=None):
 content = {
 'status': 'request was permitted'
 }
 return Response(content)

How clients are identified

The X-Forwarded-For and Remote-Addr HTTP headers are used to uniquely identify client IP addresses for throttling. If the X-Forwarded-For header is present then it will be used, otherwise the value of the Remote-Addr header will be used.

If you need to strictly identify unique client IP addresses, you’ll need to first configure the number of application proxies that the API runs behind by setting the NUM_PROXIES setting. This setting should be an integer of zero or more. If set to non-zero then the client IP will be identified as being the last IP address in the X-Forwarded-For header, once any application proxy IP addresses have first been excluded. If set to zero, then the Remote-Addr header will always be used as the identifying IP address.

It is important to understand that if you configure the NUM_PROXIES setting, then all clients behind a unique NAT’d [http://en.wikipedia.org/wiki/Network_address_translation] gateway will be treated as a single client.

Further context on how the X-Forwarded-For header works, and identifying a remote client IP can be found here [http://oxpedia.org/wiki/index.php?title=AppSuite:Grizzly#Multiple_Proxies_in_front_of_the_cluster].

Setting up the cache

The throttle classes provided by REST framework use Django’s cache backend. You should make sure that you’ve set appropriate cache settings [https://docs.djangoproject.com/en/dev/ref/settings/#caches]. The default value of LocMemCache backend should be okay for simple setups. See Django’s cache documentation [https://docs.djangoproject.com/en/dev/topics/cache/#setting-up-the-cache] for more details.

If you need to use a cache other than 'default', you can do so by creating a custom throttle class and setting the cache attribute. For example:

class CustomAnonRateThrottle(AnonRateThrottle):
 cache = get_cache('alternate')

You’ll need to remember to also set your custom throttle class in the 'DEFAULT_THROTTLE_CLASSES' settings key, or using the throttle_classes view attribute.

API Reference

AnonRateThrottle

The AnonRateThrottle will only ever throttle unauthenticated users. The IP address of the incoming request is used to generate a unique key to throttle against.

The allowed request rate is determined from one of the following (in order of preference).

		The rate property on the class, which may be provided by overriding AnonRateThrottle and setting the property.

		The DEFAULT_THROTTLE_RATES['anon'] setting.

AnonRateThrottle is suitable if you want to restrict the rate of requests from unknown sources.

UserRateThrottle

The UserRateThrottle will throttle users to a given rate of requests across the API. The user id is used to generate a unique key to throttle against. Unauthenticated requests will fall back to using the IP address of the incoming request to generate a unique key to throttle against.

The allowed request rate is determined from one of the following (in order of preference).

		The rate property on the class, which may be provided by overriding UserRateThrottle and setting the property.

		The DEFAULT_THROTTLE_RATES['user'] setting.

An API may have multiple UserRateThrottles in place at the same time. To do so, override UserRateThrottle and set a unique “scope” for each class.

For example, multiple user throttle rates could be implemented by using the following classes...

class BurstRateThrottle(UserRateThrottle):
 scope = 'burst'

class SustainedRateThrottle(UserRateThrottle):
 scope = 'sustained'

...and the following settings.

REST_FRAMEWORK = {
 'DEFAULT_THROTTLE_CLASSES': (
 'example.throttles.BurstRateThrottle',
 'example.throttles.SustainedRateThrottle'
),
 'DEFAULT_THROTTLE_RATES': {
 'burst': '60/min',
 'sustained': '1000/day'
 }
}

UserRateThrottle is suitable if you want simple global rate restrictions per-user.

ScopedRateThrottle

The ScopedRateThrottle class can be used to restrict access to specific parts of the API. This throttle will only be applied if the view that is being accessed includes a .throttle_scope property. The unique throttle key will then be formed by concatenating the “scope” of the request with the unique user id or IP address.

The allowed request rate is determined by the DEFAULT_THROTTLE_RATES setting using a key from the request “scope”.

For example, given the following views...

class ContactListView(APIView):
 throttle_scope = 'contacts'
 ...

class ContactDetailView(APIView):
 throttle_scope = 'contacts'
 ...

class UploadView(APIView):
 throttle_scope = 'uploads'
 ...

...and the following settings.

REST_FRAMEWORK = {
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.ScopedRateThrottle',
),
 'DEFAULT_THROTTLE_RATES': {
 'contacts': '1000/day',
 'uploads': '20/day'
 }
}

User requests to either ContactListView or ContactDetailView would be restricted to a total of 1000 requests per-day. User requests to UploadView would be restricted to 20 requests per day.

Custom throttles

To create a custom throttle, override BaseThrottle and implement .allow_request(self, request, view). The method should return True if the request should be allowed, and False otherwise.

Optionally you may also override the .wait() method. If implemented, .wait() should return a recommended number of seconds to wait before attempting the next request, or None. The .wait() method will only be called if .allow_request() has previously returned False.

If the .wait() method is implemented and the request is throttled, then a Retry-After header will be included in the response.

Example

The following is an example of a rate throttle, that will randomly throttle 1 in every 10 requests.

class RandomRateThrottle(throttling.BaseThrottle):
 def allow_request(self, request, view):
 return random.randint(1, 10) == 1

 © Copyright .
 Created using Sphinx 1.3.1.

topics/2.3-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 2.3

REST framework 2.3 makes it even quicker and easier to build your Web APIs.

ViewSets and Routers

The 2.3 release introduces the ViewSet and Router classes.

A viewset is simply a type of class based view that allows you to group multiple views into a single common class.

Routers allow you to automatically determine the URLconf for your viewset classes.

As an example of just how simple REST framework APIs can now be, here’s an API written in a single urls.py module:

"""
A REST framework API for viewing and editing users and groups.
"""
from django.conf.urls.defaults import url, include
from django.contrib.auth.models import User, Group
from rest_framework import viewsets, routers

ViewSets define the view behavior.
class UserViewSet(viewsets.ModelViewSet):
 model = User

class GroupViewSet(viewsets.ModelViewSet):
 model = Group

Routers provide an easy way of automatically determining the URL conf
router = routers.DefaultRouter()
router.register(r'users', UserViewSet)
router.register(r'groups', GroupViewSet)

Wire up our API using automatic URL routing.
Additionally, we include login URLs for the browsable API.
urlpatterns = [
 url(r'^', include(router.urls)),
 url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))
]

The best place to get started with ViewSets and Routers is to take a look at the newest section in the tutorial, which demonstrates their usage.

Simpler views

This release rationalises the API and implementation of the generic views, dropping the dependency on Django’s SingleObjectMixin and MultipleObjectMixin classes, removing a number of unneeded attributes, and generally making the implementation more obvious and easy to work with.

This improvement is reflected in improved documentation for the GenericAPIView base class, and should make it easier to determine how to override methods on the base class if you need to write customized subclasses.

Easier Serializers

REST framework lets you be totally explicit regarding how you want to represent relationships, allowing you to choose between styles such as hyperlinking or primary key relationships.

The ability to specify exactly how you want to represent relationships is powerful, but it also introduces complexity. In order to keep things more simple, REST framework now allows you to include reverse relationships simply by including the field name in the fields metadata of the serializer class.

For example, in REST framework 2.2, reverse relationships needed to be included explicitly on a serializer class.

class BlogSerializer(serializers.ModelSerializer):
 comments = serializers.PrimaryKeyRelatedField(many=True)

 class Meta:
 model = Blog
 fields = ('id', 'title', 'created', 'comments')

As of 2.3, you can simply include the field name, and the appropriate serializer field will automatically be used for the relationship.

class BlogSerializer(serializers.ModelSerializer):
 """
 Don't need to specify the 'comments' field explicitly anymore.
 """
 class Meta:
 model = Blog
 fields = ('id', 'title', 'created', 'comments')

Similarly, you can now easily include the primary key in hyperlinked relationships, simply by adding the field name to the metadata.

class BlogSerializer(serializers.HyperlinkedModelSerializer):
 """
 This is a hyperlinked serializer, which default to using
 a field named 'url' as the primary identifier.
 Note that we can now easily also add in the 'id' field.
 """
 class Meta:
 model = Blog
 fields = ('url', 'id', 'title', 'created', 'comments')

More flexible filtering

The FILTER_BACKEND setting has moved to pending deprecation, in favor of a DEFAULT_FILTER_BACKENDS setting that takes a list of filter backend classes, instead of a single filter backend class.

The generic view filter_backend attribute has also been moved to pending deprecation in favor of a filter_backends setting.

Being able to specify multiple filters will allow for more flexible, powerful behavior. New filter classes to handle searching and ordering of results are planned to be released shortly.

API Changes

Simplified generic view classes

The functionality provided by SingleObjectAPIView and MultipleObjectAPIView base classes has now been moved into the base class GenericAPIView. The implementation of this base class is simple enough that providing subclasses for the base classes of detail and list views is somewhat unnecessary.

Additionally the base generic view no longer inherits from Django’s SingleObjectMixin or MultipleObjectMixin classes, simplifying the implementation, and meaning you don’t need to cross-reference across to Django’s codebase.

Using the SingleObjectAPIView and MultipleObjectAPIView base classes continues to be supported, but will raise a PendingDeprecationWarning. You should instead simply use GenericAPIView as the base for any generic view subclasses.

Removed attributes

The following attributes and methods, were previously present as part of Django’s generic view implementations, but were unneeded and unused and have now been entirely removed.

		context_object_name

		get_context_data()

		get_context_object_name()

The following attributes and methods, which were previously present as part of Django’s generic view implementations have also been entirely removed.

		paginator_class

		get_paginator()

		get_allow_empty()

		get_slug_field()

There may be cases when removing these bits of API might mean you need to write a little more code if your view has highly customized behavior, but generally we believe that providing a coarser-grained API will make the views easier to work with, and is the right trade-off to make for the vast majority of cases.

Note that the listed attributes and methods have never been a documented part of the REST framework API, and as such are not covered by the deprecation policy.

Simplified methods

The get_object and get_paginate_by methods no longer take an optional queryset argument. This makes overridden these methods more obvious, and a little more simple.

Using an optional queryset with these methods continues to be supported, but will raise a PendingDeprecationWarning.

The paginate_queryset method no longer takes a page_size argument, or returns a four-tuple of pagination information. Instead it simply takes a queryset argument, and either returns a page object with an appropriate page size, or returns None, if pagination is not configured for the view.

Using the page_size argument is still supported and will trigger the old-style return type, but will raise a PendingDeprecationWarning.

Deprecated attributes

The following attributes are used to control queryset lookup, and have all been moved into a pending deprecation state.

		pk_url_kwarg = ‘pk’

		slug_url_kwarg = ‘slug’

		slug_field = ‘slug’

Their usage is replaced with a single attribute:

		lookup_field = ‘pk’

This attribute is used both as the regex keyword argument in the URL conf, and as the model field to filter against when looking up a model instance. To use non-pk based lookup, simply set the lookup_field argument to an alternative field, and ensure that the keyword argument in the url conf matches the field name.

For example, a view with ‘username’ based lookup might look like this:

class UserDetail(generics.RetrieveAPIView):
 lookup_field = 'username'
 queryset = User.objects.all()
 serializer_class = UserSerializer

And would have the following entry in the urlconf:

 url(r'^users/(?P<username>\w+)/$', UserDetail.as_view()),

Usage of the old-style attributes continues to be supported, but will raise a PendingDeprecationWarning.

The allow_empty attribute is also deprecated. To use allow_empty=False style behavior you should explicitly override get_queryset and raise an Http404 on empty querysets.

For example:

class DisallowEmptyQuerysetMixin(object):
 def get_queryset(self):
 queryset = super(DisallowEmptyQuerysetMixin, self).get_queryset()
 if not queryset.exists():
 raise Http404
 return queryset

In our opinion removing lesser-used attributes like allow_empty helps us move towards simpler generic view implementations, making them more obvious to use and override, and re-enforcing the preferred style of developers writing their own base classes and mixins for custom behavior rather than relying on the configurability of the generic views.

Simpler URL lookups

The HyperlinkedRelatedField class now takes a single optional lookup_field argument, that replaces the pk_url_kwarg, slug_url_kwarg, and slug_field arguments.

For example, you might have a field that references it’s relationship by a hyperlink based on a slug field:

 account = HyperlinkedRelatedField(read_only=True,
 lookup_field='slug',
 view_name='account-detail')

Usage of the old-style attributes continues to be supported, but will raise a PendingDeprecationWarning.

FileUploadParser

2.3 adds a FileUploadParser parser class, that supports raw file uploads, in addition to the existing multipart upload support.

DecimalField

2.3 introduces a DecimalField serializer field, which returns Decimal instances.

For most cases APIs using model fields will behave as previously, however if you are using a custom renderer, not provided by REST framework, then you may now need to add support for rendering Decimal instances to your renderer implementation.

ModelSerializers and reverse relationships

The support for adding reverse relationships to the fields option on a ModelSerializer class means that the get_related_field and get_nested_field method signatures have now changed.

In the unlikely event that you’re providing a custom serializer class, and implementing these methods you should note the new call signature for both methods is now (self, model_field, related_model, to_many). For reverse relationships model_field will be None.

The old-style signature will continue to function but will raise a PendingDeprecationWarning.

View names and descriptions

The mechanics of how the names and descriptions used in the browsable API are generated has been modified and cleaned up somewhat.

If you’ve been customizing this behavior, for example perhaps to use rst markup for the browsable API, then you’ll need to take a look at the implementation to see what updates you need to make.

Note that the relevant methods have always been private APIs, and the docstrings called them out as intended to be deprecated.

Other notes

More explicit style

The usage of model attribute in generic Views is still supported, but it’s usage is generally being discouraged throughout the documentation, in favour of the setting the more explicit queryset and serializer_class attributes.

For example, the following is now the recommended style for using generic views:

class AccountListView(generics.RetrieveAPIView):
 queryset = MyModel.objects.all()
 serializer_class = MyModelSerializer

Using an explicit queryset and serializer_class attributes makes the functioning of the view more clear than using the shortcut model attribute.

It also makes the usage of the get_queryset() or get_serializer_class() methods more obvious.

class AccountListView(generics.RetrieveAPIView):
 serializer_class = MyModelSerializer

 def get_queryset(self):
 """
 Determine the queryset dynamically, depending on the
 user making the request.

 Note that overriding this method follows on more obviously now
 that an explicit `queryset` attribute is the usual view style.
 """
 return self.user.accounts

Django 1.3 support

The 2.3.x release series will be the last series to provide compatibility with Django 1.3.

Version 2.2 API changes

All API changes in 2.2 that previously raised PendingDeprecationWarning will now raise a DeprecationWarning, which is loud by default.

What comes next?

		Support for read-write nested serializers is almost complete, and due to be released in the next few weeks.

		Extra filter backends for searching and ordering of results are planned to be added shortly.

The next few months should see a renewed focus on addressing outstanding tickets. The 2.4 release is currently planned for around August-September.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/browsable-api.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

The Browsable API

It is a profoundly erroneous truism... that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. Civilization advances by extending the number of important operations which we can perform without thinking about them.

—

 Alfred North Whitehead [http://en.wikiquote.org/wiki/Alfred_North_Whitehead], An Introduction to Mathematics (1911)

API may stand for Application Programming Interface, but humans have to be able to read the APIs, too; someone has to do the programming. Django REST Framework supports generating human-friendly HTML output for each resource when the HTML format is requested. These pages allow for easy browsing of resources, as well as forms for submitting data to the resources using POST, PUT, and DELETE.

URLs

If you include fully-qualified URLs in your resource output, they will be ‘urlized’ and made clickable for easy browsing by humans. The rest_framework package includes a reverse helper for this purpose.

Formats

By default, the API will return the format specified by the headers, which in the case of the browser is HTML. The format can be specified using ?format= in the request, so you can look at the raw JSON response in a browser by adding ?format=json to the URL. There are helpful extensions for viewing JSON in Firefox [https://addons.mozilla.org/en-US/firefox/addon/jsonview/] and Chrome [https://chrome.google.com/webstore/detail/chklaanhfefbnpoihckbnefhakgolnmc].

Customizing

The browsable API is built with Twitter’s Bootstrap [http://getbootstrap.com] (v 2.1.1), making it easy to customize the look-and-feel.

To customize the default style, create a template called rest_framework/api.html that extends from rest_framework/base.html. For example:

templates/rest_framework/api.html

{% extends "rest_framework/base.html" %}

... # Override blocks with required customizations

Overriding the default theme

To replace the default theme, add a bootstrap_theme block to your api.html and insert a link to the desired Bootstrap theme css file. This will completely replace the included theme.

{% block bootstrap_theme %}
 <link rel="stylesheet" href="/path/to/my/bootstrap.css" type="text/css">
{% endblock %}

Suitable pre-made replacement themes are available at Bootswatch [http://bootswatch.com/]. To use any of the Bootswatch themes, simply download the theme’s bootstrap.min.css file, add it to your project, and replace the default one as described above.

You can also change the navbar variant, which by default is navbar-inverse, using the bootstrap_navbar_variant block. The empty {% block bootstrap_navbar_variant %}{% endblock %} will use the original Bootstrap navbar style.

Full example:

{% extends "rest_framework/base.html" %}

{% block bootstrap_theme %}
 <link rel="stylesheet" href="http://bootswatch.com/flatly/bootstrap.min.css" type="text/css">
{% endblock %}

{% block bootstrap_navbar_variant %}{% endblock %}

For more specific CSS tweaks than simply overriding the default bootstrap theme you can override the style block.

[image: Cerulean theme]

Screenshot of the bootswatch ‘Cerulean’ theme

[image: Slate theme]

Screenshot of the bootswatch ‘Slate’ theme

Blocks

All of the blocks available in the browsable API base template that can be used in your api.html.

		body - The entire html <body>.

		bodyclass - Class attribute for the <body> tag, empty by default.

		bootstrap_theme - CSS for the Bootstrap theme.

		bootstrap_navbar_variant - CSS class for the navbar.

		branding - Branding section of the navbar, see Bootstrap components [http://getbootstrap.com/2.3.2/components.html#navbar].

		breadcrumbs - Links showing resource nesting, allowing the user to go back up the resources. It’s recommended to preserve these, but they can be overridden using the breadcrumbs block.

		script - JavaScript files for the page.

		style - CSS stylesheets for the page.

		title - Title of the page.

		userlinks - This is a list of links on the right of the header, by default containing login/logout links. To add links instead of replace, use {{ block.super }} to preserve the authentication links.

Components

All of the standard Bootstrap components [http://getbootstrap.com/2.3.2/components.html] are available.

Tooltips

The browsable API makes use of the Bootstrap tooltips component. Any element with the js-tooltip class and a title attribute has that title content will display a tooltip on hover events.

Login Template

To add branding and customize the look-and-feel of the login template, create a template called login.html and add it to your project, eg: templates/rest_framework/login.html. The template should extend from rest_framework/login_base.html.

You can add your site name or branding by including the branding block:

{% block branding %}
 <h3 style="margin: 0 0 20px;">My Site Name</h3>
{% endblock %}

You can also customize the style by adding the bootstrap_theme or style block similar to api.html.

Advanced Customization

Context

The context that’s available to the template:

		allowed_methods : A list of methods allowed by the resource

		api_settings : The API settings

		available_formats : A list of formats allowed by the resource

		breadcrumblist : The list of links following the chain of nested resources

		content : The content of the API response

		description : The description of the resource, generated from its docstring

		name : The name of the resource

		post_form : A form instance for use by the POST form (if allowed)

		put_form : A form instance for use by the PUT form (if allowed)

		display_edit_forms : A boolean indicating whether or not POST, PUT and PATCH forms will be displayed

		request : The request object

		response : The response object

		version : The version of Django REST Framework

		view : The view handling the request

		FORMAT_PARAM : The view can accept a format override

		METHOD_PARAM : The view can accept a method override

You can override the BrowsableAPIRenderer.get_context() method to customise the context that gets passed to the template.

Not using base.html

For more advanced customization, such as not having a Bootstrap basis or tighter integration with the rest of your site, you can simply choose not to have api.html extend base.html. Then the page content and capabilities are entirely up to you.

Handling ChoiceField with large numbers of items.

When a relationship or ChoiceField has too many items, rendering the widget containing all the options can become very slow, and cause the browsable API rendering to perform poorly.

The simplest option in this case is to replace the select input with a standard text input. For example:

 author = serializers.HyperlinkedRelatedField(
 queryset=User.objects.all(),
 style={'base_template': 'input.html'}
)

Autocomplete

An alternative, but more complex option would be to replace the input with an autocomplete widget, that only loads and renders a subset of the available options as needed. If you need to do this you’ll need to do some work to build a custom autocomplete HTML template yourself.

There are a variety of packages for autocomplete widgets [https://www.djangopackages.com/grids/g/auto-complete/], such as django-autocomplete-light [https://github.com/yourlabs/django-autocomplete-light], that you may want to refer to. Note that you will not be able to simply include these components as standard widgets, but will need to write the HTML template explicitly. This is because REST framework 3.0 no longer supports the widget keyword argument since it now uses templated HTML generation.

Better support for autocomplete inputs is planned in future versions.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/funding.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Funding

If you use REST framework commercially we strongly encourage you to invest in its continued development by signing up for a paid plan.

We believe that collaboratively funded software can offer outstanding returns on investment, by allowing users and clients to collectively share the cost of development.

Signing up for a paid plan will:

		Directly contribute to faster releases, more features and higher quality software.

		Allow more time to be invested in documentation, issue triage and community support.

		Safeguard the future development of REST framework.

REST framework will always be open source and permissively licensed, but we firmly believe it is in the commercial best-interest for users of the project to fund its ongoing development.

Making the business case

Our successful Kickstarter campaign demonstrates the cost-reward ratio of shared development funding.

With typical corporate fundings of just £100-£1000 per organization we successfully delivered:

		The comprehensive 3.0 serializer redesign.

		Substantial improvements to the Browsable API.

		The admin interface.

		A new pagination API including offset/limit and cursor pagination implementations, plus on-page controls.

		A versioning API, including URL-based and header-based versioning schemes.

		Support for customizable exception handling.

		Support for Django’s PostgreSQL HStoreField, ArrayField and JSONField.

		Templated HTML form support, including HTML forms with nested list and objects.

		Internationalization support for API responses, currently with 27 languages.

		The metadata APIs for handling OPTIONS requests and schema endpoints.

		Numerous minor improvements and better quality throughout the codebase.

		Ongoing triage and community support, closing over 1600 tickets.

This incredible level of return on investment is only possible through collaboratively funded models, which is why we believe that supporting our paid plans is in everyone’s best interest.

Individual plan

This subscription is recommended for freelancers and other individuals with an interest in seeing REST framework continue to

improve.

If you are using REST framework as an full-time employee, consider recommending that your company takes out a corporate

plan.

 $
 15
 /month

 Individual

 Support ongoing development

 Credited on the site

Billing is monthly and you can cancel at any time.

Corporate plans

These subscriptions are recommended for companies and organizations using REST framework either publicly or privately.

In exchange for funding you’ll also receive advertising space on our site, allowing you to promote your company or product to many tens of thousands of developers worldwide.

Our professional and premium plans also include priority support. At any time your engineers can escalate an issue or discussion group thread, and we’ll ensure it gets a guaranteed response within the next working day.

 $
 50
 /month

 Basic

 Support ongoing development

 Funding page ad placement

 $
 250
 /month

 Professional

 Add a half day per month development time to the project

 Homepage ad placement

 Priority support for your engineers

 $
 500
 /month

 Premium

 Add one full day per month development time to the project

 Full site ad placement

 Priority support for your engineers

Billing is monthly and you can cancel at any time.

Once you’ve signed up we’ll contact you via email and arrange your ad placements on the site.

For further enquires please contact tom@tomchristie.com.

Roadmap

Although we’re incredibly proud of REST framework in its current state we believe there is still huge scope for improvement. What we’re aiming for here is a highly polished, rock solid product. This needs to backed up with impeccable documentation and a great third party ecosystem.

The roadmap below is a broad indication of just some of the ongoing and future work we believe is important to REST framework.

		Increasing our “bus factor” through documented organizational process & safeguards.

		More time towards testing and hardening releases, with only gradual, well-documented deprecations.

		A formal policy on security backports for non-current releases.

		Continuing triage & community support.

		Improved project documentation, including versioned & internationalized docs.

		Improved third party package visibility.

		Refining the admin interface, ensuring it has a fully customizable API and making it suitable as end-user facing application.

		Cleaning up internal complexities including the BrowsableAPIRenderer and Request object.

		Support for alternative backends such as SQLAlchemy.

		Support for non-database backed services.

		HTTP Caching API & support for conditional database lookups.

		Benchmarking and performance improvements.

		In depth documentation on advanced usage and best practices.

		Documentation & support for integration with realtime systems.

		Hypermedia support and client libraries.

		Support for JSON schema as endpoints or OPTIONS responses.

		API metric tools.

		Debug & logging tools.

		Third party GraphQL support.

By taking out a paid plan you’ll be directly contributing towards making these features happen.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/2.2-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 2.2

The 2.2 release represents an important point for REST framework, with the addition of Python 3 support, and the introduction of an official deprecation policy.

Python 3 support

Thanks to some fantastic work from Xavier Ordoquy [https://github.com/xordoquy], Django REST framework 2.2 now supports Python 3. You’ll need to be running Django 1.5, and it’s worth keeping in mind that Django’s Python 3 support is currently considered experimental [https://docs.djangoproject.com/en/dev/faq/install/#can-i-use-django-with-python-3].

Django 1.6’s Python 3 support is expected to be officially labeled as ‘production-ready’.

If you want to start ensuring that your own projects are Python 3 ready, we can highly recommend Django’s Porting to Python 3 [https://docs.djangoproject.com/en/dev/topics/python3/] documentation.

Django REST framework’s Python 2.6 support now requires 2.6.5 or above, in line with Django 1.5’s Python compatibility [https://docs.djangoproject.com/en/dev/releases/1.5/#python-compatibility].

Deprecation policy

We’ve now introduced an official deprecation policy, which is in line with Django’s deprecation policy [https://docs.djangoproject.com/en/dev/internals/release-process/#internal-release-deprecation-policy]. This policy will make it easy for you to continue to track the latest, greatest version of REST framework.

The timeline for deprecation works as follows:

		Version 2.2 introduces some API changes as detailed in the release notes. It remains fully backwards compatible with 2.1, but will raise PendingDeprecationWarning warnings if you use bits of API that are due to be deprecated. These warnings are silent by default, but can be explicitly enabled when you’re ready to start migrating any required changes. For example if you start running your tests using python -Wd manage.py test, you’ll be warned of any API changes you need to make.

		Version 2.3 will escalate these warnings to DeprecationWarning, which is loud by default.

		Version 2.4 will remove the deprecated bits of API entirely.

Note that in line with Django’s policy, any parts of the framework not mentioned in the documentation should generally be considered private API, and may be subject to change.

Community

As of the 2.2 merge, we’ve also hit an impressive milestone. The number of committers listed in the credits [http://www.django-rest-framework.org/topics/credits], is now at over one hundred individuals. Each name on that list represents at least one merged pull request, however large or small.

Our mailing list [https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework] and #restframework IRC channel are also very active, and we’ve got a really impressive rate of development both on REST framework itself, and on third party packages such as the great django-rest-framework-docs [https://github.com/marcgibbons/django-rest-framework-docs] package from Marc Gibbons [https://github.com/marcgibbons/].

API changes

The 2.2 release makes a few changes to the API, in order to make it more consistent, simple, and easier to use.

Cleaner to-many related fields

The ManyRelatedField() style is being deprecated in favor of a new RelatedField(many=True) syntax.

For example, if a user is associated with multiple questions, which we want to represent using a primary key relationship, we might use something like the following:

class UserSerializer(serializers.HyperlinkedModelSerializer):
 questions = serializers.PrimaryKeyRelatedField(many=True)

 class Meta:
 fields = ('username', 'questions')

The new syntax is cleaner and more obvious, and the change will also make the documentation cleaner, simplify the internal API, and make writing custom relational fields easier.

The change also applies to serializers. If you have a nested serializer, you should start using many=True for to-many relationships. For example, a serializer representation of an Album that can contain many Tracks might look something like this:

class TrackSerializer(serializer.ModelSerializer):
 class Meta:
 model = Track
 fields = ('name', 'duration')

class AlbumSerializer(serializer.ModelSerializer):
 tracks = TrackSerializer(many=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Additionally, the change also applies when serializing or deserializing data. For example to serialize a queryset of models you should now use the many=True flag.

serializer = SnippetSerializer(Snippet.objects.all(), many=True)
serializer.data

This more explicit behavior on serializing and deserializing data makes integration with non-ORM backends such as MongoDB easier [https://github.com/tomchristie/django-rest-framework/issues/564], as instances to be serialized can include the __iter__ method, without incorrectly triggering list-based serialization, or requiring workarounds.

The implicit to-many behavior on serializers, and the ManyRelatedField style classes will continue to function, but will raise a PendingDeprecationWarning, which can be made visible using the -Wd flag.

Note: If you need to forcibly turn off the implicit “many=True for __iter__ objects” behavior, you can now do so by specifying many=False. This will become the default (instead of the current default of None) once the deprecation of the implicit behavior is finalised in version 2.4.

Cleaner optional relationships

Serializer relationships for nullable Foreign Keys will change from using the current null=True flag, to instead using required=False.

For example, is a user account has an optional foreign key to a company, that you want to express using a hyperlink, you might use the following field in a Serializer class:

current_company = serializers.HyperlinkedRelatedField(required=False)

This is in line both with the rest of the serializer fields API, and with Django’s Form and ModelForm API.

Using required throughout the serializers API means you won’t need to consider if a particular field should take blank or null arguments instead of required, and also means there will be more consistent behavior for how fields are treated when they are not present in the incoming data.

The null=True argument will continue to function, and will imply required=False, but will raise a PendingDeprecationWarning.

Cleaner CharField syntax

The CharField API previously took an optional blank=True argument, which was intended to differentiate between null CharField input, and blank CharField input.

In keeping with Django’s CharField API, REST framework’s CharField will only ever return the empty string, for missing or None inputs. The blank flag will no longer be in use, and you should instead just use the required=<bool> flag. For example:

extra_details = CharField(required=False)

The blank keyword argument will continue to function, but will raise a PendingDeprecationWarning.

Simpler object-level permissions

Custom permissions classes previously used the signature .has_permission(self, request, view, obj=None). This method would be called twice, firstly for the global permissions check, with the obj parameter set to None, and again for the object-level permissions check when appropriate, with the obj parameter set to the relevant model instance.

The global permissions check and object-level permissions check are now separated into two separate methods, which gives a cleaner, more obvious API.

		Global permission checks now use the .has_permission(self, request, view) signature.

		Object-level permission checks use a new method .has_object_permission(self, request, view, obj).

For example, the following custom permission class:

class IsOwner(permissions.BasePermission):
 """
 Custom permission to only allow owners of an object to view or edit it.
 Model instances are expected to include an `owner` attribute.
 """

 def has_permission(self, request, view, obj=None):
 if obj is None:
 # Ignore global permissions check
 return True

 return obj.owner == request.user

Now becomes:

class IsOwner(permissions.BasePermission):
 """
 Custom permission to only allow owners of an object to view or edit it.
 Model instances are expected to include an `owner` attribute.
 """

 def has_object_permission(self, request, view, obj):
 return obj.owner == request.user

If you’re overriding the BasePermission class, the old-style signature will continue to function, and will correctly handle both global and object-level permissions checks, but its use will raise a PendingDeprecationWarning.

Note also that the usage of the internal APIs for permission checking on the View class has been cleaned up slightly, and is now documented and subject to the deprecation policy in all future versions.

More explicit hyperlink relations behavior

When using a serializer with a HyperlinkedRelatedField or HyperlinkedIdentityField, the hyperlinks would previously use absolute URLs if the serializer context included a 'request' key, and fall back to using relative URLs otherwise. This could lead to non-obvious behavior, as it might not be clear why some serializers generated absolute URLs, and others do not.

From version 2.2 onwards, serializers with hyperlinked relationships always require a 'request' key to be supplied in the context dictionary. The implicit behavior will continue to function, but its use will raise a PendingDeprecationWarning.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/kickstarter-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Kickstarting Django REST framework 3

In order to continue to drive the project forward, I’m launching a Kickstarter campaign to help fund the development of a major new release - Django REST framework 3.

Project details

This new release will allow us to comprehensively address some of the shortcomings of the framework, and will aim to include the following:

		Faster, simpler and easier-to-use serializers.

		An alternative admin-style interface for the browsable API.

		Search and filtering controls made accessible in the browsable API.

		Alternative API pagination styles.

		Documentation around API versioning.

		Triage of outstanding tickets.

		Improving the ongoing quality and maintainability of the project.

Full details are available now on the project page [https://www.kickstarter.com/projects/tomchristie/django-rest-framework-3].

If you’re interested in helping make sustainable open source development a reality please visit the Kickstarter page [https://www.kickstarter.com/projects/tomchristie/django-rest-framework-3] and consider funding the project.

I can’t wait to see where this takes us!

Many thanks to everyone for your support so far,

Tom Christie :)

Sponsors

We’ve now blazed way past all our goals, with a staggering £30,000 (~$50,000), meaning I’ll be in a position to work on the project significantly beyond what we’d originally planned for. I owe a huge debt of gratitude to all the wonderful companies and individuals who have been backing the project so generously, and making this possible.

Platinum sponsors

Our platinum sponsors have each made a hugely substantial contribution to the future development of Django REST framework, and I simply can’t thank them enough.

		Eventbrite

		Divio

		Lulu

		Potato

		Wiredrive

		Cyan

		Runscope

		Simple Energy

		VOKAL Interactive

		Purple Bit

		KuwaitNET

Gold sponsors

Our gold sponsors include companies large and small. Many thanks for their significant funding of the project and their commitment to sustainable open-source development.

		LaterPay

		Schuberg Philis

		ProReNata AB

		SGA Websites

		Sirono

		Vinta Software Studio

		Rapasso

		Mirus Research

		Hipo

		Byte

		Lightning Kite

		Opbeat

		Koordinates

		Pulsecode Inc.

		Singing Horse Studio Ltd.

		Heroku

		Rheinwerk Verlag

		Security Compass

		Django Software Foundation

		Hipflask

		Crate

		Cryptico Corp

		NextHub

		Compile

		WusaWork

		Envision Linux

Silver sponsors

The serious financial contribution that our silver sponsors have made is very much appreciated. I’d like to say a particular thank

you to individuals who have choosen to privately support the project at this level.

		IMT Computer Services

		Wildfish

		Thermondo GmbH

		Providenz

		alwaysdata.com

		Triggered Messaging

		PushPull Technology Ltd

		Transcode

		Garfo

		Shippo

		Gizmag

		Tivix

		Safari

		Bright Loop

		ABA Systems

		beefarm.ru

		Vzzual.com

		Infinite Code

		Crossword Tracker

		PkgFarm

		Life. The Game.

		Blimp

		Pathwright

		Fluxility

		Teonite

		TrackMaven

		Phurba

		Nephila

		Aditium

		OpenEye Scientific Software

		Holvi

		Cantemo

		MakeSpace

		AX Semantics

		ISL

Individual backers: Paul Hallett, Paul Whipp, Dylan Roy, Jannis Leidel, Xavier Ordoquy, Johannes Spielmann, Rob Spectre, Chris Heisel, Marwan Alsabbagh, Haris Ali, Tuomas Toivonen.

Advocates

The following individuals made a significant financial contribution to the development of Django REST framework 3, for which I can only offer a huge, warm and sincere thank you!

Individual backers: Jure Cuhalev, Kevin Brolly, Ferenc Szalai, Dougal Matthews, Stefan Foulis, Carlos Hernando, Alen Mujezinovic, Ross Crawford-d’Heureuse, George Kappel, Alasdair Nicol, John Carr, Steve Winton, Trey, Manuel Miranda, David Horn, Vince Mi, Daniel Sears, Jamie Matthews, Ryan Currah, Marty Kemka, Scott Nixon, Moshin Elahi, Kevin Campbell, Jose Antonio Leiva Izquierdo, Kevin Stone, Andrew Godwin, Tijs Teulings, Roger Boardman, Xavier Antoviaque, Darian Moody, Lujeni, Jon Dugan, Wiley Kestner, Daniel C. Silverstein, Daniel Hahler, Subodh Nijsure, Philipp Weidenhiller, Yusuke Muraoka, Danny Roa, Reto Aebersold, Kyle Getrost, Décébal Hormuz, James Dacosta, Matt Long, Mauro Rocco, Tyrel Souza, Ryan Campbell, Ville Jyrkkä, Charalampos Papaloizou, Nikolai Røed Kristiansen, Antoni Aloy López, Celia Oakley, Michał Krawczak, Ivan VenOsdel, Tim Watts, Martin Warne, Nicola Jordan, Ryan Kaskel.

Corporate backers: Savannah Informatics, Prism Skylabs, Musical Operating Devices.

Supporters

There were also almost 300 further individuals choosing to help fund the project at other levels or choosing to give anonymously. Again, thank you, thank you, thank you!

 © Copyright .
 Created using Sphinx 1.3.1.

topics/3.3-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 3.3

The 3.3 release marks the final work in the Kickstarter funded series. We’d like to offer a final resounding thank you to all our wonderful sponsors and supporters.

The amount of work that has been achieved as a direct result of the funding is immense. We’ve added a huge amounts of new functionality, resolved nearly 2,000 tickets, and redesigned & refined large parts of the project.

In order to continue driving REST framework forward, we’ll shortly be announcing a new set of funding plans. Follow @_tomchristie [https://twitter.com/_tomchristie] to keep up to date with these announcements, and be among the first set of sign ups.

We strongly believe that collaboratively funded software development yields outstanding results for a relatively low investment-per-head. If you or your company use REST framework commercially, then we would strongly urge you to participate in this latest funding drive, and help us continue to build an increasingly polished & professional product.

Release notes

Significant new functionality in the 3.3 release includes:

		Filters presented as HTML controls in the browsable API.

		A forms API, allowing serializers to be rendered as HTML forms.

		Django 1.9 support.

		A JSONField serializer field, corresponding to Django 1.9’s Postgres JSONField model field.

		Browsable API support via AJAX [https://github.com/tomchristie/ajax-form], rather than server side request overloading.

[image: Filter Controls]

Example of the new filter controls

Supported versions

This release drops support for Django 1.5 and 1.6. Django 1.7, 1.8 or 1.9 are now required.

This brings our supported versions into line with Django’s currently supported versions [https://www.djangoproject.com/download/#supported-versions]

Deprecations

The AJAX based support for the browsable API means that there are a number of internal cleanups in the request class. For the vast majority of developers this should largely remain transparent:

		To support form based PUT and DELETE, or to support form content types such as JSON, you should now use the [AJAX forms][ajax-forms] javascript library. This replaces the previous ‘method and content type overloading’ that required significant internal complexity to the request class.

		The accept query parameter is no longer supported by the default content negotiation class. If you require it then you’ll need to use a custom content negotiation class.

		The custom HTTP_X_HTTP_METHOD_OVERRIDE header is no longer supported by default. If you require it then you’ll need to use custom middleware.

The following pagination view attributes and settings have been moved into attributes on the pagination class since 3.1. Their usage was formerly deprecated, and has now been removed entirely, in line with the deprecation policy.

		view.paginate_by - Use paginator.page_size instead.

		view.page_query_param - Use paginator.page_query_param instead.

		view.paginate_by_param - Use paginator.page_size_query_param instead.

		view.max_paginate_by - Use paginator.max_page_size instead.

		settings.PAGINATE_BY - Use paginator.page_size instead.

		settings.PAGINATE_BY_PARAM - Use paginator.page_size_query_param instead.

		settings.MAX_PAGINATE_BY - Use paginator.max_page_size instead.

The ModelSerializer and HyperlinkedModelSerializer classes should now include either a fields or exclude option, although the fields = '__all__' shortcut may be used. Failing to include either of these two options is currently pending deprecation, and will be removed entirely in the 3.5 release. This behavior brings ModelSerializer more closely in line with Django’s ModelForm behavior.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/rest-hypermedia-hateoas.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

REST, Hypermedia & HATEOAS

You keep using that word “REST”. I do not think it means what you think it means.

—

 Mike Amundsen, REST fest 2012 keynote [http://vimeo.com/channels/restfest/page:2].

First off, the disclaimer. The name “Django REST framework” was decided back in early 2011 and was chosen simply to sure the project would be easily found by developers. Throughout the documentation we try to use the more simple and technically correct terminology of “Web APIs”.

If you are serious about designing a Hypermedia API, you should look to resources outside of this documentation to help inform your design choices.

The following fall into the “required reading” category.

		Roy Fielding’s dissertation - Architectural Styles and
the Design of Network-based Software Architectures [http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm].

		Roy Fielding’s “REST APIs must be hypertext-driven [http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven]” blog post.

		Leonard Richardson & Mike Amundsen’s RESTful Web APIs [http://restfulwebapis.org/].

		Mike Amundsen’s Building Hypermedia APIs with HTML5 and Node [http://www.amazon.com/Building-Hypermedia-APIs-HTML5-Node/dp/1449306578].

		Steve Klabnik’s Designing Hypermedia APIs [http://designinghypermediaapis.com/].

		The Richardson Maturity Model [http://martinfowler.com/articles/richardsonMaturityModel.html].

For a more thorough background, check out Klabnik’s Hypermedia API reading list [http://blog.steveklabnik.com/posts/2012-02-27-hypermedia-api-reading-list].

Building Hypermedia APIs with REST framework

REST framework is an agnostic Web API toolkit. It does help guide you towards building well-connected APIs, and makes it easy to design appropriate media types, but it does not strictly enforce any particular design style.

What REST framework provides.

It is self evident that REST framework makes it possible to build Hypermedia APIs. The browsable API that it offers is built on HTML - the hypermedia language of the web.

REST framework also includes serialization and parser/renderer components that make it easy to build appropriate media types, hyperlinked relations for building well-connected systems, and great support for content negotiation.

What REST framework doesn’t provide.

What REST framework doesn’t do is give you machine readable hypermedia formats such as HAL [http://stateless.co/hal_specification.html], Collection+JSON [http://www.amundsen.com/media-types/collection/], JSON API [http://jsonapi.org/] or HTML microformats [http://microformats.org/wiki/Main_Page] by default, or the ability to auto-magically create fully HATEOAS style APIs that include hypermedia-based form descriptions and semantically labelled hyperlinks. Doing so would involve making opinionated choices about API design that should really remain outside of the framework’s scope.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/contributing.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Contributing to REST framework

The world can only really be changed one piece at a time. The art is picking that piece.

—

 Tim Berners-Lee [http://www.w3.org/People/Berners-Lee/FAQ.html]

There are many ways you can contribute to Django REST framework. We’d like it to be a community-led project, so please get involved and help shape the future of the project.

Community

The most important thing you can do to help push the REST framework project forward is to be actively involved wherever possible. Code contributions are often overvalued as being the primary way to get involved in a project, we don’t believe that needs to be the case.

If you use REST framework, we’d love you to be vocal about your experiences with it - you might consider writing a blog post about using REST framework, or publishing a tutorial about building a project with a particular JavaScript framework. Experiences from beginners can be particularly helpful because you’ll be in the best position to assess which bits of REST framework are more difficult to understand and work with.

Other really great ways you can help move the community forward include helping to answer questions on the discussion group [https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework], or setting up an email alert on StackOverflow [http://stackexchange.com/filters/66475/rest-framework] so that you get notified of any new questions with the django-rest-framework tag.

When answering questions make sure to help future contributors find their way around by hyperlinking wherever possible to related threads and tickets, and include backlinks from those items if relevant.

Code of conduct

Please keep the tone polite & professional. For some users a discussion on the REST framework mailing list or ticket tracker may be their first engagement with the open source community. First impressions count, so let’s try to make everyone feel welcome.

Be mindful in the language you choose. As an example, in an environment that is heavily male-dominated, posts that start ‘Hey guys,’ can come across as unintentionally exclusive. It’s just as easy, and more inclusive to use gender neutral language in those situations.

The Django code of conduct [https://www.djangoproject.com/conduct/] gives a fuller set of guidelines for participating in community forums.

Issues

It’s really helpful if you can make sure to address issues on the correct channel. Usage questions should be directed to the discussion group [https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework]. Feature requests, bug reports and other issues should be raised on the GitHub issue tracker [https://github.com/tomchristie/django-rest-framework/issues?state=open].

Some tips on good issue reporting:

		When describing issues try to phrase your ticket in terms of the behavior you think needs changing rather than the code you think need changing.

		Search the issue list first for related items, and make sure you’re running the latest version of REST framework before reporting an issue.

		If reporting a bug, then try to include a pull request with a failing test case. This will help us quickly identify if there is a valid issue, and make sure that it gets fixed more quickly if there is one.

		Feature requests will often be closed with a recommendation that they be implemented outside of the core REST framework library. Keeping new feature requests implemented as third party libraries allows us to keep down the maintenance overhead of REST framework, so that the focus can be on continued stability, bugfixes, and great documentation.

		Closing an issue doesn’t necessarily mean the end of a discussion. If you believe your issue has been closed incorrectly, explain why and we’ll consider if it needs to be reopened.

Triaging issues

Getting involved in triaging incoming issues is a good way to start contributing. Every single ticket that comes into the ticket tracker needs to be reviewed in order to determine what the next steps should be. Anyone can help out with this, you just need to be willing to

		Read through the ticket - does it make sense, is it missing any context that would help explain it better?

		Is the ticket reported in the correct place, would it be better suited as a discussion on the discussion group?

		If the ticket is a bug report, can you reproduce it? Are you able to write a failing test case that demonstrates the issue and that can be submitted as a pull request?

		If the ticket is a feature request, do you agree with it, and could the feature request instead be implemented as a third party package?

		If a ticket hasn’t had much activity and it addresses something you need, then comment on the ticket and try to find out what’s needed to get it moving again.

Development

To start developing on Django REST framework, clone the repo:

git clone git@github.com:tomchristie/django-rest-framework.git

Changes should broadly follow the PEP 8 [http://www.python.org/dev/peps/pep-0008/] style conventions, and we recommend you set up your editor to automatically indicate non-conforming styles.

Testing

To run the tests, clone the repository, and then:

Setup the virtual environment
virtualenv env
source env/bin/activate
pip install -r requirements.txt

Run the tests
./runtests.py

Test options

Run using a more concise output style.

./runtests.py -q

Run the tests using a more concise output style, no coverage, no flake8.

./runtests.py --fast

Don’t run the flake8 code linting.

./runtests.py --nolint

Only run the flake8 code linting, don’t run the tests.

./runtests.py --lintonly

Run the tests for a given test case.

./runtests.py MyTestCase

Run the tests for a given test method.

./runtests.py MyTestCase.test_this_method

Shorter form to run the tests for a given test method.

./runtests.py test_this_method

Note: The test case and test method matching is fuzzy and will sometimes run other tests that contain a partial string match to the given command line input.

Running against multiple environments

You can also use the excellent tox [http://tox.readthedocs.org/en/latest/] testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:

tox

Pull requests

It’s a good idea to make pull requests early on. A pull request represents the start of a discussion, and doesn’t necessarily need to be the final, finished submission.

It’s also always best to make a new branch before starting work on a pull request. This means that you’ll be able to later switch back to working on another separate issue without interfering with an ongoing pull requests.

It’s also useful to remember that if you have an outstanding pull request then pushing new commits to your GitHub repo will also automatically update the pull requests.

GitHub’s documentation for working on pull requests is available here [https://help.github.com/articles/using-pull-requests].

Always run the tests before submitting pull requests, and ideally run tox in order to check that your modifications are compatible with both Python 2 and Python 3, and that they run properly on all supported versions of Django.

Once you’ve made a pull request take a look at the Travis build status in the GitHub interface and make sure the tests are running as you’d expect.

[image: Travis status]

Above: Travis build notifications

Managing compatibility issues

Sometimes, in order to ensure your code works on various different versions of Django, Python or third party libraries, you’ll need to run slightly different code depending on the environment. Any code that branches in this way should be isolated into the compat.py module, and should provide a single common interface that the rest of the codebase can use.

Documentation

The documentation for REST framework is built from the Markdown [http://daringfireball.net/projects/markdown/basics] source files in the docs directory [https://github.com/tomchristie/django-rest-framework/tree/master/docs].

There are many great Markdown editors that make working with the documentation really easy. The Mou editor for Mac [http://mouapp.com/] is one such editor that comes highly recommended.

Building the documentation

To build the documentation, install MkDocs with pip install mkdocs and then run the following command.

mkdocs build

This will build the documentation into the site directory.

You can build the documentation and open a preview in a browser window by using the serve command.

mkdocs serve

Language style

Documentation should be in American English. The tone of the documentation is very important - try to stick to a simple, plain, objective and well-balanced style where possible.

Some other tips:

		Keep paragraphs reasonably short.

		Don’t use abbreviations such as ‘e.g.’ but instead use the long form, such as ‘For example’.

Markdown style

There are a couple of conventions you should follow when working on the documentation.

1. Headers

Headers should use the hash style. For example:

Some important topic

The underline style should not be used. Don’t do this:

Some important topic
====================

2. Links

Links should always use the reference style, with the referenced hyperlinks kept at the end of the document.

Here is a link to [some other thing][other-thing].

More text...

[other-thing]: http://example.com/other/thing

This style helps keep the documentation source consistent and readable.

If you are hyperlinking to another REST framework document, you should use a relative link, and link to the .md suffix. For example:

[authentication]: ../api-guide/authentication.md

Linking in this style means you’ll be able to click the hyperlink in your Markdown editor to open the referenced document. When the documentation is built, these links will be converted into regular links to HTML pages.

3. Notes

If you want to draw attention to a note or warning, use a pair of enclosing lines, like so:

Note: A useful documentation note.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/internationalization.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Internationalization

Supporting internationalization is not optional. It must be a core feature.

—

 Jannis Leidel, speaking at Django Under the Hood, 2015 [http://youtu.be/Wa0VfS2q94Y].

REST framework ships with translatable error messages. You can make these appear in your language enabling Django’s standard translation mechanisms [https://docs.djangoproject.com/en/1.7/topics/i18n/translation].

Doing so will allow you to:

		Select a language other than English as the default, using the standard LANGUAGE_CODE Django setting.

		Allow clients to choose a language themselves, using the LocaleMiddleware included with Django. A typical usage for API clients would be to include an Accept-Language request header.

Enabling internationalized APIs

You can change the default language by using the standard Django LANGUAGE_CODE setting:

LANGUAGE_CODE = "es-es"

You can turn on per-request language requests by adding LocalMiddleware to your MIDDLEWARE_CLASSES setting:

MIDDLEWARE_CLASSES = [
 ...
 'django.middleware.locale.LocaleMiddleware'
]

When per-request internationalization is enabled, client requests will respect the Accept-Language header where possible. For example, let’s make a request for an unsupported media type:

Request

GET /api/users HTTP/1.1
Accept: application/xml
Accept-Language: es-es
Host: example.org

Response

HTTP/1.0 406 NOT ACCEPTABLE

{"detail": "No se ha podido satisfacer la solicitud de cabecera de Accept."}

REST framework includes these built-in translations both for standard exception cases, and for serializer validation errors.

Note that the translations only apply to the error strings themselves. The format of error messages, and the keys of field names will remain the same. An example 400 Bad Request response body might look like this:

{"detail": {"username": ["Esse campo deve ser unico."]}}

If you want to use different string for parts of the response such as detail and non_field_errors then you can modify this behavior by using a custom exception handler.

Specifying the set of supported languages.

By default all available languages will be supported.

If you only wish to support a subset of the available languages, use Django’s standard LANGUAGES setting:

LANGUAGES = [
 ('de', _('German')),
 ('en', _('English')),
]

Adding new translations

REST framework translations are managed online using Transifex [https://www.transifex.com/projects/p/django-rest-framework/]. You can use the Transifex service to add new translation languages. The maintenance team will then ensure that these translation strings are included in the REST framework package.

Sometimes you may need to add translation strings to your project locally. You may need to do this if:

		You want to use REST Framework in a language which has not been translated yet on Transifex.

		Your project includes custom error messages, which are not part of REST framework’s default translation strings.

Translating a new language locally

This guide assumes you are already familiar with how to translate a Django app. If you’re not, start by reading Django’s translation docs [https://docs.djangoproject.com/en/1.7/topics/i18n/translation].

If you’re translating a new language you’ll need to translate the existing REST framework error messages:

		Make a new folder where you want to store the internationalization resources. Add this path to your LOCALE_PATHS [https://docs.djangoproject.com/en/1.7/ref/settings/#std:setting-LOCALE_PATHS] setting.

		Now create a subfolder for the language you want to translate. The folder should be named using locale name [https://docs.djangoproject.com/en/1.7/topics/i18n/#term-locale-name] notation. For example: de, pt_BR, es_AR.

		Now copy the base translations file [https://raw.githubusercontent.com/tomchristie/django-rest-framework/master/rest_framework/locale/en_US/LC_MESSAGES/django.po] from the REST framework source code into your translations folder.

		Edit the django.po file you’ve just copied, translating all the error messages.

		Run manage.py compilemessages -l pt_BR to make the translations
available for Django to use. You should see a message like processing file django.po in <...>/locale/pt_BR/LC_MESSAGES.

		Restart your development server to see the changes take effect.

If you’re only translating custom error messages that exist inside your project codebase you don’t need to copy the REST framework source django.po file into a LOCALE_PATHS folder, and can instead simply run Django’s standard makemessages process.

How the language is determined

If you want to allow per-request language preferences you’ll need to include django.middleware.locale.LocaleMiddleware in your MIDDLEWARE_CLASSES setting.

You can find more information on how the language preference is determined in the Django documentation [https://docs.djangoproject.com/en/1.7/topics/i18n/translation/#how-django-discovers-language-preference]. For reference, the method is:

		First, it looks for the language prefix in the requested URL.

		Failing that, it looks for the LANGUAGE_SESSION_KEY key in the current user’s session.

		Failing that, it looks for a cookie.

		Failing that, it looks at the Accept-Language HTTP header.

		Failing that, it uses the global LANGUAGE_CODE setting.

For API clients the most appropriate of these will typically be to use the Accept-Language header; Sessions and cookies will not be available unless using session authentication, and generally better practice to prefer an Accept-Language header for API clients rather than using language URL prefixes.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/project-management.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Project management

“No one can whistle a symphony; it takes a whole orchestra to play it”

—

 Halford E. Luccock

This document outlines our project management processes for REST framework.

The aim is to ensure that the project has a high
“bus factor” [http://en.wikipedia.org/wiki/Bus_factor], and can continue to remain well supported for the foreseeable future. Suggestions for improvements to our process are welcome.

Maintenance team

We have a quarterly maintenance cycle where new members may join the maintenance team. We currently cap the size of the team at 5 members, and may encourage folks to step out of the team for a cycle to allow new members to participate.

Current team

The maintenance team for Q1 2015 [https://github.com/tomchristie/django-rest-framework/issues/2190]:

		@tomchristie [https://github.com/tomchristie/]

		@xordoquy [https://github.com/xordoquy/] (Release manager.)

		@carltongibson [https://github.com/carltongibson/]

		@kevin-brown [https://github.com/kevin-brown/]

		@jpadilla [https://github.com/jpadilla/]

Maintenance cycles

Each maintenance cycle is initiated by an issue being opened with the Process label.

		To be considered for a maintainer role simply comment against the issue.

		Existing members must explicitly opt-in to the next cycle by check-marking their name.

		The final decision on the incoming team will be made by @tomchristie.

Members of the maintenance team will be added as collaborators to the repository.

The following template should be used for the description of the issue, and serves as the formal process for selecting the team.

This issue is for determining the maintenance team for the *** period.

Please see the [Project management](http://www.django-rest-framework.org/topics/project-management/) section of our documentation for more details.

Renewing existing members.

The following people are the current maintenance team. Please checkmark your name if you wish to continue to have write permission on the repository for the *** period.

- [] @***
- [] @***
- [] @***
- [] @***
- [] @***

New members.

If you wish to be considered for this or a future date, please comment against this or subsequent issues.

To modify this process for future maintenance cycles make a pull request to the [project management](http://www.django-rest-framework.org/topics/project-management/) documentation.

Responsibilities of team members

Team members have the following responsibilities.

		Close invalid or resolved tickets.

		Add triage labels and milestones to tickets.

		Merge finalized pull requests.

		Build and deploy the documentation, using mkdocs gh-deploy.

		Build and update the included translation packs.

Further notes for maintainers:

		Code changes should come in the form of a pull request - do not push directly to master.

		Maintainers should typically not merge their own pull requests.

		Each issue/pull request should have exactly one label once triaged.

		Search for un-triaged issues with is:open no:label [https://github.com/tomchristie/django-rest-framework/issues?q=is%3Aopen+no%3Alabel].

It should be noted that participating actively in the REST framework project clearly does not require being part of the maintenance team. Almost every import part of issue triage and project improvement can be actively worked on regardless of your collaborator status on the repository.

Release process

The release manager is selected on every quarterly maintenance cycle.

		The manager should be selected by @tomchristie.

		The manager will then have the maintainer role added to PyPI package.

		The previous manager will then have the maintainer role removed from the PyPI package.

Our PyPI releases will be handled by either the current release manager, or by @tomchristie. Every release should have an open issue tagged with the Release label and marked against the appropriate milestone.

The following template should be used for the description of the issue, and serves as a release checklist.

Release manager is @***.
Pull request is #***.

During development cycle:

- [] Upload the new content to be translated to [transifex](http://www.django-rest-framework.org/topics/project-management/#translations).

Checklist:

- [] Create pull request for [release notes](https://github.com/tomchristie/django-rest-framework/blob/master/docs/topics/release-notes.md) based on the [*.*.* milestone](https://github.com/tomchristie/django-rest-framework/milestones/***).
- [] Update the translations from [transifex](http://www.django-rest-framework.org/topics/project-management/#translations).
- [] Ensure the pull request increments the version to `*.*.*` in [`restframework/__init__.py`](https://github.com/tomchristie/django-rest-framework/blob/master/rest_framework/__init__.py).
- [] Confirm with @tomchristie that release is finalized and ready to go.
- [] Ensure that release date is included in pull request.
- [] Merge the release pull request.
- [] Push the package to PyPI with `./setup.py publish`.
- [] Tag the release, with `git tag -a *.*.* -m 'version *.*.*'; git push --tags`.
- [] Deploy the documentation with `mkdocs gh-deploy`.
- [] Make a release announcement on the [discussion group](https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework).
- [] Make a release announcement on twitter.
- [] Close the milestone on GitHub.

To modify this process for future releases make a pull request to the [project management](http://www.django-rest-framework.org/topics/project-management/) documentation.

When pushing the release to PyPI ensure that your environment has been installed from our development requirement.txt, so that documentation and PyPI installs are consistently being built against a pinned set of packages.

Translations

The maintenance team are responsible for managing the translation packs include in REST framework. Translating the source strings into multiple languages is managed through the transifex service [https://www.transifex.com/projects/p/django-rest-framework/].

Managing Transifex

The official Transifex client [https://pypi.python.org/pypi/transifex-client] is used to upload and download translations to Transifex. The client is installed using pip:

pip install transifex-client

To use it you’ll need a login to Transifex which has a password, and you’ll need to have administrative access to the Transifex project. You’ll need to create a ~/.transifexrc file which contains your credentials.

[https://www.transifex.com]
username = ***
token = ***
password = ***
hostname = https://www.transifex.com

Upload new source files

When any user visible strings are changed, they should be uploaded to Transifex so that the translators can start to translate them. To do this, just run:

1. Update the source django.po file, which is the US English version.
cd rest_framework
django-admin.py makemessages -l en_US
2. Push the source django.po file to Transifex.
cd ..
tx push -s

When pushing source files, Transifex will update the source strings of a resource to match those from the new source file.

Here’s how differences between the old and new source files will be handled:

		New strings will be added.

		Modified strings will be added as well.

		Strings which do not exist in the new source file will be removed from the database, along with their translations. If that source strings gets re-added later then Transifex Translation Memory [http://docs.transifex.com/guides/tm#let-tm-automatically-populate-translations] will automatically include the translation string.

Download translations

When a translator has finished translating their work needs to be downloaded from Transifex into the REST framework repository. To do this, run:

3. Pull the translated django.po files from Transifex.
tx pull -a
cd rest_framework
4. Compile the binary .mo files for all supported languages.
django-admin.py compilemessages

Project requirements

All our test requirements are pinned to exact versions, in order to ensure that our test runs are reproducible. We maintain the requirements in the requirements directory. The requirements files are referenced from the tox.ini configuration file, ensuring we have a single source of truth for package versions used in testing.

Package upgrades should generally be treated as isolated pull requests. You can check if there are any packages available at a newer version, by using the pip list --outdated.

Project ownership

The PyPI package is owned by @tomchristie. As a backup @j4mie also has ownership of the package.

If @tomchristie ceases to participate in the project then @j4mie has responsibility for handing over ownership duties.

Outstanding management & ownership issues

The following issues still need to be addressed:

		Consider moving the repo into a proper GitHub organization [https://github.com/tomchristie/django-rest-framework/issues/2162].

		Ensure @jamie has back-up access to the django-rest-framework.org domain setup and admin.

		Document ownership of the live example [http://restframework.herokuapp.com/] API.

		Document ownership of the mailing list [https://groups.google.com/forum/#!forum/django-rest-framework] and IRC channel.

		Document ownership and management of the security mailing list.

 © Copyright .
 Created using Sphinx 1.3.1.

topics/2.4-announcement.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Django REST framework 2.4

The 2.4 release is largely an intermediate step, tying up some outstanding issues prior to the 3.x series.

Version requirements

Support for Django 1.3 has been dropped.
The lowest supported version of Django is now 1.4.2.

The current plan is for REST framework to remain in lockstep with Django’s long-term support policy [https://docs.djangoproject.com/en/dev/internals/release-process/#long-term-support-lts-releases].

Django 1.7 support

The optional authtoken application now includes support for both Django 1.7 schema migrations, and for old-style south migrations.

If you are using authtoken, and you want to continue using south, you must upgrade your south package to version 1.0.

Deprecation of .model view attribute

The .model attribute on view classes is an optional shortcut for either or both of .serializer_class and .queryset. Its usage results in more implicit, less obvious behavior.

The documentation has previously stated that usage of the more explicit style is prefered, and we’re now taking that one step further and deprecating the usage of the .model shortcut.

Doing so will mean that there are cases of API code where you’ll now need to include a serializer class where you previously were just using the .model shortcut. However we firmly believe that it is the right trade-off to make.

Removing the shortcut takes away an unnecessary layer of abstraction, and makes your codebase more explicit without any significant extra complexity. It also results in better consistency, as there’s now only one way to set the serializer class and queryset attributes for the view, instead of two.

The DEFAULT_MODEL_SERIALIZER_CLASS API setting is now also deprecated.

Updated test runner

We now have a new test runner for developing against the project,, that uses the excellent py.test [http://pytest.org] library.

To use it make sure you have first installed the test requirements.

pip install -r requirements-test.txt

Then run the runtests.py script.

./runtests.py

The new test runner also includes flake8 [https://flake8.readthedocs.org] code linting, which should help keep our coding style consistent.

Test runner flags

Run using a more concise output style.

./runtests -q

Run the tests using a more concise output style, no coverage, no flake8.

./runtests --fast

Don’t run the flake8 code linting.

./runtests --nolint

Only run the flake8 code linting, don’t run the tests.

./runtests --lintonly

Run the tests for a given test case.

./runtests MyTestCase

Run the tests for a given test method.

./runtests MyTestCase.test_this_method

Shorter form to run the tests for a given test method.

./runtests test_this_method

Note: The test case and test method matching is fuzzy and will sometimes run other tests that contain a partial string match to the given command line input.

Improved viewset routing

The @action and @link decorators were inflexible in that they only allowed additional routes to be added against instance style URLs, not against list style URLs.

The @action and @link decorators have now been moved to pending deprecation, and the @list_route and @detail_route decorators have been introduced.

Here’s an example of using the new decorators. Firstly we have a detail-type route named “set_password” that acts on a single instance, and takes a pk argument in the URL. Secondly we have a list-type route named “recent_users” that acts on a queryset, and does not take any arguments in the URL.

class UserViewSet(viewsets.ModelViewSet):
 """
 A viewset that provides the standard actions
 """
 queryset = User.objects.all()
 serializer_class = UserSerializer

 @detail_route(methods=['post'])
 def set_password(self, request, pk=None):
 user = self.get_object()
 serializer = PasswordSerializer(data=request.DATA)
 if serializer.is_valid():
 user.set_password(serializer.data['password'])
 user.save()
 return Response({'status': 'password set'})
 else:
 return Response(serializer.errors,
 status=status.HTTP_400_BAD_REQUEST)

 @list_route()
 def recent_users(self, request):
 recent_users = User.objects.all().order('-last_login')
 page = self.paginate_queryset(recent_users)
 serializer = self.get_pagination_serializer(page)
 return Response(serializer.data)

For more details, see the viewsets documentation.

Throttle behavior

There’s one bugfix in 2.4 that’s worth calling out, as it will invalidate existing throttle caches when you upgrade.

We’ve now fixed a typo on the cache_format attribute. Previously this was named "throtte_%(scope)s_%(ident)s", it is now "throttle_%(scope)s_%(ident)s".

If you’re concerned about the invalidation you have two options.

		Manually pre-populate your cache with the fixed version.

		Set the cache_format attribute on your throttle class in order to retain the previous incorrect spelling.

Other features

There are also a number of other features and bugfixes as listed in the release notes. In particular these include:

Customizable view name and description functions for use with the browsable API, by using the VIEW_NAME_FUNCTION and VIEW_DESCRIPTION_FUNCTION settings.

Smarter client IP identification for throttling, with the addition of the NUM_PROXIES setting.

Added the standardized Retry-After header to throttled responses, as per RFC 6585 [http://tools.ietf.org/html/rfc6585]. This should now be used in preference to the custom X-Throttle-Wait-Seconds header which will be fully deprecated in 3.0.

Deprecations

All API changes in 2.3 that previously raised PendingDeprecationWarning will now raise a DeprecationWarning, which is loud by default.

All API changes in 2.3 that previously raised DeprecationWarning have now been removed entirely.

Furter details on these deprecations is available in the 2.3 announcement.

Labels and milestones

Although not strictly part of the 2.4 release it’s also worth noting here that we’ve been working hard towards improving our triage process.

The labels that we use in GitHub [https://github.com/tomchristie/django-rest-framework/issues] have been cleaned up, and all existing tickets triaged. Any given ticket should have one and only one label, indicating its current state.

We’ve also started using milestones [https://github.com/tomchristie/django-rest-framework/milestones] in order to track tickets against particular releases.

[image: Labels and milestones]

Above: Overview of our current use of labels and milestones in GitHub.

We hope both of these changes will help make the management process more clear and obvious and help keep tickets well-organised and relevant.

Next steps

The next planned release will be 3.0, featuring an improved and simplified serializer implementation.

Once again, many thanks to all the generous backers and sponsors who’ve helped make this possible!

 © Copyright .
 Created using Sphinx 1.3.1.

topics/browser-enhancements.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Browser enhancements

“There are two noncontroversial uses for overloaded POST. The first is to simulate HTTP’s uniform interface for clients like web browsers that don’t support PUT or DELETE”

—

 RESTful Web Services [http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260], Leonard Richardson & Sam Ruby.

In order to allow the browsable API to function, there are a couple of browser enhancements that REST framework needs to provide.

As of version 3.3.0 onwards these are enabled with javascript, using the ajax-form [https://github.com/tomchristie/ajax-form] library.

Browser based PUT, DELETE, etc...

The AJAX form library [https://github.com/tomchristie/ajax-form] supports browser-based PUT, DELETE and other methods on HTML forms.

After including the library, use the data-method attribute on the form, like so:

<form action="/" data-method="PUT">
 <input name='foo'/>
 ...
</form>

Note that prior to 3.3.0, this support was server-side rather than javascript based. The method overloading style (as used in Ruby on Rails [http://guides.rubyonrails.org/form_helpers.html#how-do-forms-with-put-or-delete-methods-work]) is no longer supported due to subtle issues that it introduces in request parsing.

Browser based submission of non-form content

Browser-based submission of content types such as JSON are supported by the AJAX form library [https://github.com/tomchristie/ajax-form], using form fields with data-override='content-type' and data-override='content' attributes.

For example:

 <form action="/">
 <input data-override='content-type' value='application/json' type='hidden'/>
 <textarea data-override='content'>{}</textarea>
 <input type="submit"/>
 </form>

Note that prior to 3.3.0, this support was server-side rather than javascript based.

URL based format suffixes

REST framework can take ?format=json style URL parameters, which can be a
useful shortcut for determining which content type should be returned from
the view.

This behavior is controlled using the URL_FORMAT_OVERRIDE setting.

HTTP header based method overriding

Prior to version 3.3.0 the semi extension header X-HTTP-Method-Override was supported for overriding the request method. This behavior is no longer in core, but can be adding if needed using middleware.

For example:

METHOD_OVERRIDE_HEADER = 'HTTP_X_HTTP_METHOD_OVERRIDE'

class MethodOverrideMiddleware(object):
 def process_view(self, request, callback, callback_args, callback_kwargs):
 if request.method != 'POST':
 return
 if METHOD_OVERRIDE_HEADER not in request.META:
 return
 request.method = request.META[METHOD_OVERRIDE_HEADER]

URL based accept headers

Until version 3.3.0 REST framework included built-in support for ?accept=application/json style URL parameters, which would allow the Accept header to be overridden.

Since the introduction of the content negotiation API this behavior is no longer included in core, but may be added using a custom content negotiation class, if needed.

For example:

class AcceptQueryParamOverride()
 def get_accept_list(self, request):
 header = request.META.get('HTTP_ACCEPT', '*/*')
 header = request.query_params.get('_accept', header)
 return [token.strip() for token in header.split(',')]

Doesn’t HTML5 support PUT and DELETE forms?

Nope. It was at one point intended to support PUT and DELETE forms, but
was later dropped from the spec [http://www.w3.org/TR/html5-diff/#changes-2010-06-24]. There remains
ongoing discussion [http://amundsen.com/examples/put-delete-forms/] about adding support for PUT and DELETE,
as well as how to support content types other than form-encoded data.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_images/self-describing.png
Api Root

Snippet List

This view presents a list of code snippets, and allows new snippets to be created.
Try it yourself by logging In as one of these four users: amy, max, jose or aziz - The passwords are the same as the user

Note that code snippets are paginated to a maximum of 10 per page, and the maximum number of code snippets is capr

GET /snippets

HTTP 200 0K
Content-Type: text/html

Vary: Accept

Allow: HEAD, OPTIONS, POST, GET

"count”: 77
“next”: "http://restframenork.herokuapp. com/snippets/Zpage=2"
“previous”: null

“results”

_static/plus.png

_images/admin.png
Api Root

User List

User List

Username
tester
another
admin
tom

example

Email
testing@example.com
foo@tom.com
admin@example.com
tom@foo.net

example@foobar.com

Groups

Moderators, Contractors

Moderators

Contractors

_images/cerulean.png
Django REST framework v236

Api Root ~ Snippet List

OPTION:

Snippet List

This endpoint presents code snippets.
The highlight field presents a hyperiink to the hightlighted HTML representation of the code snippet.
The owner of the code snippet may update or delete instances of the code snippet.

Try it yourself by logging in as one of these four users: amy, max, jose or aziz. The passwords are the same as the usernames.

GET /snippets/

HTTP 200 0K
Vary: Accept
Content-Tyy
AUlow: GET, POST, HEAD, OPTIONS

“count": 0,
“next: null,
wprevious”: null,

_images/ordering-filter.png
Ordering

rname

username - descending

email - ascending

‘email - descending

_images/quickstart.png
User List

[rp——
GET Jusers.
HTTP 200 0K

Vary: Accept
Content-Type: text/htnl
Allow: GET, POST, HEAD, OPTIONS

count: 2
next”s null
previous”: null
results

enail”: "adningexansle.con'

groups’
url”: "http://127.0.0.1:8000/users/1/
usernane”: “adnin

enail”: "tonsexanple.con'

groups’
url”: "http://127.0.0.1:8000/users/2/
Usemame

ena

_images/slate.png
Django REST framework v2.3.6 aziz ~

Api Root > Snippet List

Snippet List [ezms] (7]

This endpoint presents code snippets.
The field presents a hyperlink to the hightlighted HTML representation of the code snippet.
The owner of the code snippet may update or delete nstances of the code snippet.

Try it yourself by logging n as one of these four users: amy, max, jose or aziz. The passwords are the same as the usernames

GET /snipp

HTTP 200 0K

“count"

_images/apiary.png
Sample APl v2

Welcome to the our sample API documentation. All comments can be written in (support Markdown syntax)

Shopping Cart Resources

‘The followingis a section of resources related to the shopping cart

List products added into your shopping-cart. (comment block again in Markdown)

Save new products in your shopping cart

mment

Payment Resources

“This resource allows you to submit payment information to process your shopping cart tems

_images/vertical.png
Email

Email

Password
) Remember me

Signin

_images/filter-controls.png
Filters

Search

QOrdering

username - descending

email - ascending

emal - descending

Q search

_images/filter-controls1.png
Filters

Search

QOrdering

username - descending

email - ascending

emal - descending

Q search

_images/cursor-pagination.png
« Previous Next»

GET /users/7cursor=cDoyMDA%3D

_images/link-header-pagination.png
GET /users/

HTTP 200 0K

Vary: Accept

Content-Type: application/json

Link: <http://127.0.0.1:8000/users/7pag
Allow: GET, POST, HEAD, OPTIONS

http://127.0.0.1:8000/users/1/"

_images/django-filter.png
Field filters

Username:

Email address:

_images/horizontal.png
Password

Remember me

Email

Password

Signin

tutorial/5-relationships-and-hyperlinked-apis.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 5: Relationships & Hyperlinked APIs

At the moment relationships within our API are represented by using primary keys. In this part of the tutorial we’ll improve the cohesion and discoverability of our API, by instead using hyperlinking for relationships.

Creating an endpoint for the root of our API

Right now we have endpoints for ‘snippets’ and ‘users’, but we don’t have a single entry point to our API. To create one, we’ll use a regular function-based view and the @api_view decorator we introduced earlier. In your snippets/views.py add:

from rest_framework.decorators import api_view
from rest_framework.response import Response
from rest_framework.reverse import reverse

@api_view(('GET',))
def api_root(request, format=None):
 return Response({
 'users': reverse('user-list', request=request, format=format),
 'snippets': reverse('snippet-list', request=request, format=format)
 })

Two things should be noticed here. First, we’re using REST framework’s reverse function in order to return fully-qualified URLs; second, URL patterns are identified by convenience names that we will declare later on in our snippets/urls.py.

Creating an endpoint for the highlighted snippets

The other obvious thing that’s still missing from our pastebin API is the code highlighting endpoints.

Unlike all our other API endpoints, we don’t want to use JSON, but instead just present an HTML representation. There are two styles of HTML renderer provided by REST framework, one for dealing with HTML rendered using templates, the other for dealing with pre-rendered HTML. The second renderer is the one we’d like to use for this endpoint.

The other thing we need to consider when creating the code highlight view is that there’s no existing concrete generic view that we can use. We’re not returning an object instance, but instead a property of an object instance.

Instead of using a concrete generic view, we’ll use the base class for representing instances, and create our own .get() method. In your snippets/views.py add:

from rest_framework import renderers
from rest_framework.response import Response

class SnippetHighlight(generics.GenericAPIView):
 queryset = Snippet.objects.all()
 renderer_classes = (renderers.StaticHTMLRenderer,)

 def get(self, request, *args, **kwargs):
 snippet = self.get_object()
 return Response(snippet.highlighted)

As usual we need to add the new views that we’ve created in to our URLconf.
We’ll add a url pattern for our new API root in snippets/urls.py:

url(r'^$', views.api_root),

And then add a url pattern for the snippet highlights:

url(r'^snippets/(?P<pk>[0-9]+)/highlight/$', views.SnippetHighlight.as_view()),

Hyperlinking our API

Dealing with relationships between entities is one of the more challenging aspects of Web API design. There are a number of different ways that we might choose to represent a relationship:

		Using primary keys.

		Using hyperlinking between entities.

		Using a unique identifying slug field on the related entity.

		Using the default string representation of the related entity.

		Nesting the related entity inside the parent representation.

		Some other custom representation.

REST framework supports all of these styles, and can apply them across forward or reverse relationships, or apply them across custom managers such as generic foreign keys.

In this case we’d like to use a hyperlinked style between entities. In order to do so, we’ll modify our serializers to extend HyperlinkedModelSerializer instead of the existing ModelSerializer.

The HyperlinkedModelSerializer has the following differences from ModelSerializer:

		It does not include the pk field by default.

		It includes a url field, using HyperlinkedIdentityField.

		Relationships use HyperlinkedRelatedField,
instead of PrimaryKeyRelatedField.

We can easily re-write our existing serializers to use hyperlinking. In your snippets/serializers.py add:

class SnippetSerializer(serializers.HyperlinkedModelSerializer):
 owner = serializers.ReadOnlyField(source='owner.username')
 highlight = serializers.HyperlinkedIdentityField(view_name='snippet-highlight', format='html')

 class Meta:
 model = Snippet
 fields = ('url', 'highlight', 'owner',
 'title', 'code', 'linenos', 'language', 'style')

class UserSerializer(serializers.HyperlinkedModelSerializer):
 snippets = serializers.HyperlinkedRelatedField(many=True, view_name='snippet-detail', read_only=True)

 class Meta:
 model = User
 fields = ('url', 'username', 'snippets')

Notice that we’ve also added a new 'highlight' field. This field is of the same type as the url field, except that it points to the 'snippet-highlight' url pattern, instead of the 'snippet-detail' url pattern.

Because we’ve included format suffixed URLs such as '.json', we also need to indicate on the highlight field that any format suffixed hyperlinks it returns should use the '.html' suffix.

Making sure our URL patterns are named

If we’re going to have a hyperlinked API, we need to make sure we name our URL patterns. Let’s take a look at which URL patterns we need to name.

		The root of our API refers to 'user-list' and 'snippet-list'.

		Our snippet serializer includes a field that refers to 'snippet-highlight'.

		Our user serializer includes a field that refers to 'snippet-detail'.

		Our snippet and user serializers include 'url' fields that by default will refer to '{model_name}-detail', which in this case will be 'snippet-detail' and 'user-detail'.

After adding all those names into our URLconf, our final snippets/urls.py file should look like this:

from django.conf.urls import url, include
from rest_framework.urlpatterns import format_suffix_patterns
from snippets import views

API endpoints
urlpatterns = format_suffix_patterns([
 url(r'^$', views.api_root),
 url(r'^snippets/$',
 views.SnippetList.as_view(),
 name='snippet-list'),
 url(r'^snippets/(?P<pk>[0-9]+)/$',
 views.SnippetDetail.as_view(),
 name='snippet-detail'),
 url(r'^snippets/(?P<pk>[0-9]+)/highlight/$',
 views.SnippetHighlight.as_view(),
 name='snippet-highlight'),
 url(r'^users/$',
 views.UserList.as_view(),
 name='user-list'),
 url(r'^users/(?P<pk>[0-9]+)/$',
 views.UserDetail.as_view(),
 name='user-detail')
])

Login and logout views for the browsable API
urlpatterns += [
 url(r'^api-auth/', include('rest_framework.urls',
 namespace='rest_framework')),
]

Adding pagination

The list views for users and code snippets could end up returning quite a lot of instances, so really we’d like to make sure we paginate the results, and allow the API client to step through each of the individual pages.

We can change the default list style to use pagination, by modifying our tutorial/settings.py file slightly. Add the following setting:

REST_FRAMEWORK = {
 'PAGE_SIZE': 10
}

Note that settings in REST framework are all namespaced into a single dictionary setting, named ‘REST_FRAMEWORK’, which helps keep them well separated from your other project settings.

We could also customize the pagination style if we needed too, but in this case we’ll just stick with the default.

Browsing the API

If we open a browser and navigate to the browsable API, you’ll find that you can now work your way around the API simply by following links.

You’ll also be able to see the ‘highlight’ links on the snippet instances, that will take you to the highlighted code HTML representations.

In part 6 of the tutorial we’ll look at how we can use ViewSets and Routers to reduce the amount of code we need to build our API.

 © Copyright .
 Created using Sphinx 1.3.1.

tutorial/2-requests-and-responses.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 2: Requests and Responses

From this point we’re going to really start covering the core of REST framework.
Let’s introduce a couple of essential building blocks.

Request objects

REST framework introduces a Request object that extends the regular HttpRequest, and provides more flexible request parsing. The core functionality of the Request object is the request.data attribute, which is similar to request.POST, but more useful for working with Web APIs.

request.POST # Only handles form data. Only works for 'POST' method.
request.data # Handles arbitrary data. Works for 'POST', 'PUT' and 'PATCH' methods.

Response objects

REST framework also introduces a Response object, which is a type of TemplateResponse that takes unrendered content and uses content negotiation to determine the correct content type to return to the client.

return Response(data) # Renders to content type as requested by the client.

Status codes

Using numeric HTTP status codes in your views doesn’t always make for obvious reading, and it’s easy to not notice if you get an error code wrong. REST framework provides more explicit identifiers for each status code, such as HTTP_400_BAD_REQUEST in the status module. It’s a good idea to use these throughout rather than using numeric identifiers.

Wrapping API views

REST framework provides two wrappers you can use to write API views.

		The @api_view decorator for working with function based views.

		The APIView class for working with class based views.

These wrappers provide a few bits of functionality such as making sure you receive Request instances in your view, and adding context to Response objects so that content negotiation can be performed.

The wrappers also provide behaviour such as returning 405 Method Not Allowed responses when appropriate, and handling any ParseError exception that occurs when accessing request.data with malformed input.

Pulling it all together

Okay, let’s go ahead and start using these new components to write a few views.

We don’t need our JSONResponse class in views.py anymore, so go ahead and delete that. Once that’s done we can start refactoring our views slightly.

from rest_framework import status
from rest_framework.decorators import api_view
from rest_framework.response import Response
from snippets.models import Snippet
from snippets.serializers import SnippetSerializer

@api_view(['GET', 'POST'])
def snippet_list(request):
 """
 List all snippets, or create a new snippet.
 """
 if request.method == 'GET':
 snippets = Snippet.objects.all()
 serializer = SnippetSerializer(snippets, many=True)
 return Response(serializer.data)

 elif request.method == 'POST':
 serializer = SnippetSerializer(data=request.data)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_201_CREATED)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

Our instance view is an improvement over the previous example. It’s a little more concise, and the code now feels very similar to if we were working with the Forms API. We’re also using named status codes, which makes the response meanings more obvious.

Here is the view for an individual snippet, in the views.py module.

@api_view(['GET', 'PUT', 'DELETE'])
def snippet_detail(request, pk):
 """
 Retrieve, update or delete a snippet instance.
 """
 try:
 snippet = Snippet.objects.get(pk=pk)
 except Snippet.DoesNotExist:
 return Response(status=status.HTTP_404_NOT_FOUND)

 if request.method == 'GET':
 serializer = SnippetSerializer(snippet)
 return Response(serializer.data)

 elif request.method == 'PUT':
 serializer = SnippetSerializer(snippet, data=request.data)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

 elif request.method == 'DELETE':
 snippet.delete()
 return Response(status=status.HTTP_204_NO_CONTENT)

This should all feel very familiar - it is not a lot different from working with regular Django views.

Notice that we’re no longer explicitly tying our requests or responses to a given content type. request.data can handle incoming json requests, but it can also handle other formats. Similarly we’re returning response objects with data, but allowing REST framework to render the response into the correct content type for us.

Adding optional format suffixes to our URLs

To take advantage of the fact that our responses are no longer hardwired to a single content type let’s add support for format suffixes to our API endpoints. Using format suffixes gives us URLs that explicitly refer to a given format, and means our API will be able to handle URLs such as http://example.com/api/items/4/.json.

Start by adding a format keyword argument to both of the views, like so.

def snippet_list(request, format=None):

and

def snippet_detail(request, pk, format=None):

Now update the urls.py file slightly, to append a set of format_suffix_patterns in addition to the existing URLs.

from django.conf.urls import url
from rest_framework.urlpatterns import format_suffix_patterns
from snippets import views

urlpatterns = [
 url(r'^snippets/$', views.snippet_list),
 url(r'^snippets/(?P<pk>[0-9]+)$', views.snippet_detail),
]

urlpatterns = format_suffix_patterns(urlpatterns)

We don’t necessarily need to add these extra url patterns in, but it gives us a simple, clean way of referring to a specific format.

How’s it looking?

Go ahead and test the API from the command line, as we did in tutorial part 1. Everything is working pretty similarly, although we’ve got some nicer error handling if we send invalid requests.

We can get a list of all of the snippets, as before.

http http://127.0.0.1:8000/snippets/

HTTP/1.1 200 OK
...
[
 {
 "id": 1,
 "title": "",
 "code": "foo = \"bar\"\n",
 "linenos": false,
 "language": "python",
 "style": "friendly"
 },
 {
 "id": 2,
 "title": "",
 "code": "print \"hello, world\"\n",
 "linenos": false,
 "language": "python",
 "style": "friendly"
 }
]

We can control the format of the response that we get back, either by using the Accept header:

http http://127.0.0.1:8000/snippets/ Accept:application/json # Request JSON
http http://127.0.0.1:8000/snippets/ Accept:text/html # Request HTML

Or by appending a format suffix:

http http://127.0.0.1:8000/snippets.json # JSON suffix
http http://127.0.0.1:8000/snippets.api # Browsable API suffix

Similarly, we can control the format of the request that we send, using the Content-Type header.

POST using form data
http --form POST http://127.0.0.1:8000/snippets/ code="print 123"

{
 "id": 3,
 "title": "",
 "code": "print 123",
 "linenos": false,
 "language": "python",
 "style": "friendly"
}

POST using JSON
http --json POST http://127.0.0.1:8000/snippets/ code="print 456"

{
 "id": 4,
 "title": "",
 "code": "print 456",
 "linenos": false,
 "language": "python",
 "style": "friendly"
}

Now go and open the API in a web browser, by visiting http://127.0.0.1:8000/snippets/.

Browsability

Because the API chooses the content type of the response based on the client request, it will, by default, return an HTML-formatted representation of the resource when that resource is requested by a web browser. This allows for the API to return a fully web-browsable HTML representation.

Having a web-browsable API is a huge usability win, and makes developing and using your API much easier. It also dramatically lowers the barrier-to-entry for other developers wanting to inspect and work with your API.

See the browsable api topic for more information about the browsable API feature and how to customize it.

What’s next?

In tutorial part 3, we’ll start using class based views, and see how generic views reduce the amount of code we need to write.

 © Copyright .
 Created using Sphinx 1.3.1.

tutorial/4-authentication-and-permissions.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 4: Authentication & Permissions

Currently our API doesn’t have any restrictions on who can edit or delete code snippets. We’d like to have some more advanced behavior in order to make sure that:

		Code snippets are always associated with a creator.

		Only authenticated users may create snippets.

		Only the creator of a snippet may update or delete it.

		Unauthenticated requests should have full read-only access.

Adding information to our model

We’re going to make a couple of changes to our Snippet model class.
First, let’s add a couple of fields. One of those fields will be used to represent the user who created the code snippet. The other field will be used to store the highlighted HTML representation of the code.

Add the following two fields to the Snippet model in models.py.

owner = models.ForeignKey('auth.User', related_name='snippets')
highlighted = models.TextField()

We’d also need to make sure that when the model is saved, that we populate the highlighted field, using the pygments code highlighting library.

We’ll need some extra imports:

from pygments.lexers import get_lexer_by_name
from pygments.formatters.html import HtmlFormatter
from pygments import highlight

And now we can add a .save() method to our model class:

def save(self, *args, **kwargs):
 """
 Use the `pygments` library to create a highlighted HTML
 representation of the code snippet.
 """
 lexer = get_lexer_by_name(self.language)
 linenos = self.linenos and 'table' or False
 options = self.title and {'title': self.title} or {}
 formatter = HtmlFormatter(style=self.style, linenos=linenos,
 full=True, **options)
 self.highlighted = highlight(self.code, lexer, formatter)
 super(Snippet, self).save(*args, **kwargs)

When that’s all done we’ll need to update our database tables.
Normally we’d create a database migration in order to do that, but for the purposes of this tutorial, let’s just delete the database and start again.

rm -f tmp.db db.sqlite3
rm -r snippets/migrations
python manage.py makemigrations snippets
python manage.py migrate

You might also want to create a few different users, to use for testing the API. The quickest way to do this will be with the createsuperuser command.

python manage.py createsuperuser

Adding endpoints for our User models

Now that we’ve got some users to work with, we’d better add representations of those users to our API. Creating a new serializer is easy. In serializers.py add:

from django.contrib.auth.models import User

class UserSerializer(serializers.ModelSerializer):
 snippets = serializers.PrimaryKeyRelatedField(many=True, queryset=Snippet.objects.all())

 class Meta:
 model = User
 fields = ('id', 'username', 'snippets')

Because 'snippets' is a reverse relationship on the User model, it will not be included by default when using the ModelSerializer class, so we needed to add an explicit field for it.

We’ll also add a couple of views to views.py. We’d like to just use read-only views for the user representations, so we’ll use the ListAPIView and RetrieveAPIView generic class based views.

from django.contrib.auth.models import User

class UserList(generics.ListAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer

class UserDetail(generics.RetrieveAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer

Make sure to also import the UserSerializer class

from snippets.serializers import UserSerializer

Finally we need to add those views into the API, by referencing them from the URL conf. Add the following to the patterns in urls.py.

url(r'^users/$', views.UserList.as_view()),
url(r'^users/(?P<pk>[0-9]+)/$', views.UserDetail.as_view()),

Associating Snippets with Users

Right now, if we created a code snippet, there’d be no way of associating the user that created the snippet, with the snippet instance. The user isn’t sent as part of the serialized representation, but is instead a property of the incoming request.

The way we deal with that is by overriding a .perform_create() method on our snippet views, that allows us to modify how the instance save is managed, and handle any information that is implicit in the incoming request or requested URL.

On the SnippetList view class, add the following method:

def perform_create(self, serializer):
 serializer.save(owner=self.request.user)

The create() method of our serializer will now be passed an additional 'owner' field, along with the validated data from the request.

Updating our serializer

Now that snippets are associated with the user that created them, let’s update our SnippetSerializer to reflect that. Add the following field to the serializer definition in serializers.py:

owner = serializers.ReadOnlyField(source='owner.username')

Note: Make sure you also add 'owner', to the list of fields in the inner Meta class.

This field is doing something quite interesting. The source argument controls which attribute is used to populate a field, and can point at any attribute on the serialized instance. It can also take the dotted notation shown above, in which case it will traverse the given attributes, in a similar way as it is used with Django’s template language.

The field we’ve added is the untyped ReadOnlyField class, in contrast to the other typed fields, such as CharField, BooleanField etc... The untyped ReadOnlyField is always read-only, and will be used for serialized representations, but will not be used for updating model instances when they are deserialized. We could have also used CharField(read_only=True) here.

Adding required permissions to views

Now that code snippets are associated with users, we want to make sure that only authenticated users are able to create, update and delete code snippets.

REST framework includes a number of permission classes that we can use to restrict who can access a given view. In this case the one we’re looking for is IsAuthenticatedOrReadOnly, which will ensure that authenticated requests get read-write access, and unauthenticated requests get read-only access.

First add the following import in the views module

from rest_framework import permissions

Then, add the following property to both the SnippetList and SnippetDetail view classes.

permission_classes = (permissions.IsAuthenticatedOrReadOnly,)

Adding login to the Browsable API

If you open a browser and navigate to the browsable API at the moment, you’ll find that you’re no longer able to create new code snippets. In order to do so we’d need to be able to login as a user.

We can add a login view for use with the browsable API, by editing the URLconf in our project-level urls.py file.

Add the following import at the top of the file:

from django.conf.urls import include

And, at the end of the file, add a pattern to include the login and logout views for the browsable API.

urlpatterns += [
 url(r'^api-auth/', include('rest_framework.urls',
 namespace='rest_framework')),
]

The r'^api-auth/' part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the 'rest_framework' namespace.

Now if you open up the browser again and refresh the page you’ll see a ‘Login’ link in the top right of the page. If you log in as one of the users you created earlier, you’ll be able to create code snippets again.

Once you’ve created a few code snippets, navigate to the ‘/users/’ endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user’s ‘snippets’ field.

Object level permissions

Really we’d like all code snippets to be visible to anyone, but also make sure that only the user that created a code snippet is able to update or delete it.

To do that we’re going to need to create a custom permission.

In the snippets app, create a new file, permissions.py

from rest_framework import permissions

class IsOwnerOrReadOnly(permissions.BasePermission):
 """
 Custom permission to only allow owners of an object to edit it.
 """

 def has_object_permission(self, request, view, obj):
 # Read permissions are allowed to any request,
 # so we'll always allow GET, HEAD or OPTIONS requests.
 if request.method in permissions.SAFE_METHODS:
 return True

 # Write permissions are only allowed to the owner of the snippet.
 return obj.owner == request.user

Now we can add that custom permission to our snippet instance endpoint, by editing the permission_classes property on the SnippetDetail view class:

permission_classes = (permissions.IsAuthenticatedOrReadOnly,
 IsOwnerOrReadOnly,)

Make sure to also import the IsOwnerOrReadOnly class.

from snippets.permissions import IsOwnerOrReadOnly

Now, if you open a browser again, you find that the ‘DELETE’ and ‘PUT’ actions only appear on a snippet instance endpoint if you’re logged in as the same user that created the code snippet.

Authenticating with the API

Because we now have a set of permissions on the API, we need to authenticate our requests to it if we want to edit any snippets. We haven’t set up any authentication classes, so the defaults are currently applied, which are SessionAuthentication and BasicAuthentication.

When we interact with the API through the web browser, we can login, and the browser session will then provide the required authentication for the requests.

If we’re interacting with the API programmatically we need to explicitly provide the authentication credentials on each request.

If we try to create a snippet without authenticating, we’ll get an error:

http POST http://127.0.0.1:8000/snippets/ code="print 123"

{
 "detail": "Authentication credentials were not provided."
}

We can make a successful request by including the username and password of one of the users we created earlier.

http -a tom:password POST http://127.0.0.1:8000/snippets/ code="print 789"

{
 "id": 5,
 "owner": "tom",
 "title": "foo",
 "code": "print 789",
 "linenos": false,
 "language": "python",
 "style": "friendly"
}

Summary

We’ve now got a fairly fine-grained set of permissions on our Web API, and end points for users of the system and for the code snippets that they have created.

In part 5 of the tutorial we’ll look at how we can tie everything together by creating an HTML endpoint for our highlighted snippets, and improve the cohesion of our API by using hyperlinking for the relationships within the system.

 © Copyright .
 Created using Sphinx 1.3.1.

tutorial/6-viewsets-and-routers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 6: ViewSets & Routers

REST framework includes an abstraction for dealing with ViewSets, that allows the developer to concentrate on modeling the state and interactions of the API, and leave the URL construction to be handled automatically, based on common conventions.

ViewSet classes are almost the same thing as View classes, except that they provide operations such as read, or update, and not method handlers such as get or put.

A ViewSet class is only bound to a set of method handlers at the last moment, when it is instantiated into a set of views, typically by using a Router class which handles the complexities of defining the URL conf for you.

Refactoring to use ViewSets

Let’s take our current set of views, and refactor them into view sets.

First of all let’s refactor our UserList and UserDetail views into a single UserViewSet. We can remove the two views, and replace them with a single class:

from rest_framework import viewsets

class UserViewSet(viewsets.ReadOnlyModelViewSet):
 """
 This viewset automatically provides `list` and `detail` actions.
 """
 queryset = User.objects.all()
 serializer_class = UserSerializer

Here we’ve used the ReadOnlyModelViewSet class to automatically provide the default ‘read-only’ operations. We’re still setting the queryset and serializer_class attributes exactly as we did when we were using regular views, but we no longer need to provide the same information to two separate classes.

Next we’re going to replace the SnippetList, SnippetDetail and SnippetHighlight view classes. We can remove the three views, and again replace them with a single class.

from rest_framework.decorators import detail_route

class SnippetViewSet(viewsets.ModelViewSet):
 """
 This viewset automatically provides `list`, `create`, `retrieve`,
 `update` and `destroy` actions.

 Additionally we also provide an extra `highlight` action.
 """
 queryset = Snippet.objects.all()
 serializer_class = SnippetSerializer
 permission_classes = (permissions.IsAuthenticatedOrReadOnly,
 IsOwnerOrReadOnly,)

 @detail_route(renderer_classes=[renderers.StaticHTMLRenderer])
 def highlight(self, request, *args, **kwargs):
 snippet = self.get_object()
 return Response(snippet.highlighted)

 def perform_create(self, serializer):
 serializer.save(owner=self.request.user)

This time we’ve used the ModelViewSet class in order to get the complete set of default read and write operations.

Notice that we’ve also used the @detail_route decorator to create a custom action, named highlight. This decorator can be used to add any custom endpoints that don’t fit into the standard create/update/delete style.

Custom actions which use the @detail_route decorator will respond to GET requests. We can use the methods argument if we wanted an action that responded to POST requests.

The URLs for custom actions by default depend on the method name itself. If you want to change the way url should be constructed, you can include url_path as a decorator keyword argument.

Binding ViewSets to URLs explicitly

The handler methods only get bound to the actions when we define the URLConf.
To see what’s going on under the hood let’s first explicitly create a set of views from our ViewSets.

In the urls.py file we bind our ViewSet classes into a set of concrete views.

from snippets.views import SnippetViewSet, UserViewSet, api_root
from rest_framework import renderers

snippet_list = SnippetViewSet.as_view({
 'get': 'list',
 'post': 'create'
})
snippet_detail = SnippetViewSet.as_view({
 'get': 'retrieve',
 'put': 'update',
 'patch': 'partial_update',
 'delete': 'destroy'
})
snippet_highlight = SnippetViewSet.as_view({
 'get': 'highlight'
}, renderer_classes=[renderers.StaticHTMLRenderer])
user_list = UserViewSet.as_view({
 'get': 'list'
})
user_detail = UserViewSet.as_view({
 'get': 'retrieve'
})

Notice how we’re creating multiple views from each ViewSet class, by binding the http methods to the required action for each view.

Now that we’ve bound our resources into concrete views, we can register the views with the URL conf as usual.

urlpatterns = format_suffix_patterns([
 url(r'^$', api_root),
 url(r'^snippets/$', snippet_list, name='snippet-list'),
 url(r'^snippets/(?P<pk>[0-9]+)/$', snippet_detail, name='snippet-detail'),
 url(r'^snippets/(?P<pk>[0-9]+)/highlight/$', snippet_highlight, name='snippet-highlight'),
 url(r'^users/$', user_list, name='user-list'),
 url(r'^users/(?P<pk>[0-9]+)/$', user_detail, name='user-detail')
])

Using Routers

Because we’re using ViewSet classes rather than View classes, we actually don’t need to design the URL conf ourselves. The conventions for wiring up resources into views and urls can be handled automatically, using a Router class. All we need to do is register the appropriate view sets with a router, and let it do the rest.

Here’s our re-wired urls.py file.

from django.conf.urls import url, include
from snippets import views
from rest_framework.routers import DefaultRouter

Create a router and register our viewsets with it.
router = DefaultRouter()
router.register(r'snippets', views.SnippetViewSet)
router.register(r'users', views.UserViewSet)

The API URLs are now determined automatically by the router.
Additionally, we include the login URLs for the browsable API.
urlpatterns = [
 url(r'^', include(router.urls)),
 url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))
]

Registering the viewsets with the router is similar to providing a urlpattern. We include two arguments - the URL prefix for the views, and the viewset itself.

The DefaultRouter class we’re using also automatically creates the API root view for us, so we can now delete the api_root method from our views module.

Trade-offs between views vs viewsets

Using viewsets can be a really useful abstraction. It helps ensure that URL conventions will be consistent across your API, minimizes the amount of code you need to write, and allows you to concentrate on the interactions and representations your API provides rather than the specifics of the URL conf.

That doesn’t mean it’s always the right approach to take. There’s a similar set of trade-offs to consider as when using class-based views instead of function based views. Using viewsets is less explicit than building your views individually.

Reviewing our work

With an incredibly small amount of code, we’ve now got a complete pastebin Web API, which is fully web browsable, and comes complete with authentication, per-object permissions, and multiple renderer formats.

We’ve walked through each step of the design process, and seen how if we need to customize anything we can gradually work our way down to simply using regular Django views.

You can review the final tutorial code [https://github.com/tomchristie/rest-framework-tutorial] on GitHub, or try out a live example in the sandbox [http://restframework.herokuapp.com/].

Onwards and upwards

We’ve reached the end of our tutorial. If you want to get more involved in the REST framework project, here are a few places you can start:

		Contribute on GitHub [https://github.com/tomchristie/django-rest-framework] by reviewing and submitting issues, and making pull requests.

		Join the REST framework discussion group [https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework], and help build the community.

		Follow the author [https://twitter.com/_tomchristie] on Twitter and say hi.

Now go build awesome things.

 © Copyright .
 Created using Sphinx 1.3.1.

tutorial/3-class-based-views.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 3: Class Based Views

We can also write our API views using class based views, rather than function based views. As we’ll see this is a powerful pattern that allows us to reuse common functionality, and helps us keep our code DRY [http://en.wikipedia.org/wiki/Don’t_repeat_yourself].

Rewriting our API using class based views

We’ll start by rewriting the root view as a class based view. All this involves is a little bit of refactoring of views.py.

from snippets.models import Snippet
from snippets.serializers import SnippetSerializer
from django.http import Http404
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import status

class SnippetList(APIView):
 """
 List all snippets, or create a new snippet.
 """
 def get(self, request, format=None):
 snippets = Snippet.objects.all()
 serializer = SnippetSerializer(snippets, many=True)
 return Response(serializer.data)

 def post(self, request, format=None):
 serializer = SnippetSerializer(data=request.data)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data, status=status.HTTP_201_CREATED)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

So far, so good. It looks pretty similar to the previous case, but we’ve got better separation between the different HTTP methods. We’ll also need to update the instance view in views.py.

class SnippetDetail(APIView):
 """
 Retrieve, update or delete a snippet instance.
 """
 def get_object(self, pk):
 try:
 return Snippet.objects.get(pk=pk)
 except Snippet.DoesNotExist:
 raise Http404

 def get(self, request, pk, format=None):
 snippet = self.get_object(pk)
 serializer = SnippetSerializer(snippet)
 return Response(serializer.data)

 def put(self, request, pk, format=None):
 snippet = self.get_object(pk)
 serializer = SnippetSerializer(snippet, data=request.data)
 if serializer.is_valid():
 serializer.save()
 return Response(serializer.data)
 return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

 def delete(self, request, pk, format=None):
 snippet = self.get_object(pk)
 snippet.delete()
 return Response(status=status.HTTP_204_NO_CONTENT)

That’s looking good. Again, it’s still pretty similar to the function based view right now.

We’ll also need to refactor our urls.py slightly now we’re using class based views.

from django.conf.urls import url
from rest_framework.urlpatterns import format_suffix_patterns
from snippets import views

urlpatterns = [
 url(r'^snippets/$', views.SnippetList.as_view()),
 url(r'^snippets/(?P<pk>[0-9]+)/$', views.SnippetDetail.as_view()),
]

urlpatterns = format_suffix_patterns(urlpatterns)

Okay, we’re done. If you run the development server everything should be working just as before.

Using mixins

One of the big wins of using class based views is that it allows us to easily compose reusable bits of behaviour.

The create/retrieve/update/delete operations that we’ve been using so far are going to be pretty similar for any model-backed API views we create. Those bits of common behaviour are implemented in REST framework’s mixin classes.

Let’s take a look at how we can compose the views by using the mixin classes. Here’s our views.py module again.

from snippets.models import Snippet
from snippets.serializers import SnippetSerializer
from rest_framework import mixins
from rest_framework import generics

class SnippetList(mixins.ListModelMixin,
 mixins.CreateModelMixin,
 generics.GenericAPIView):
 queryset = Snippet.objects.all()
 serializer_class = SnippetSerializer

 def get(self, request, *args, **kwargs):
 return self.list(request, *args, **kwargs)

 def post(self, request, *args, **kwargs):
 return self.create(request, *args, **kwargs)

We’ll take a moment to examine exactly what’s happening here. We’re building our view using GenericAPIView, and adding in ListModelMixin and CreateModelMixin.

The base class provides the core functionality, and the mixin classes provide the .list() and .create() actions. We’re then explicitly binding the get and post methods to the appropriate actions. Simple enough stuff so far.

class SnippetDetail(mixins.RetrieveModelMixin,
 mixins.UpdateModelMixin,
 mixins.DestroyModelMixin,
 generics.GenericAPIView):
 queryset = Snippet.objects.all()
 serializer_class = SnippetSerializer

 def get(self, request, *args, **kwargs):
 return self.retrieve(request, *args, **kwargs)

 def put(self, request, *args, **kwargs):
 return self.update(request, *args, **kwargs)

 def delete(self, request, *args, **kwargs):
 return self.destroy(request, *args, **kwargs)

Pretty similar. Again we’re using the GenericAPIView class to provide the core functionality, and adding in mixins to provide the .retrieve(), .update() and .destroy() actions.

Using generic class based views

Using the mixin classes we’ve rewritten the views to use slightly less code than before, but we can go one step further. REST framework provides a set of already mixed-in generic views that we can use to trim down our views.py module even more.

from snippets.models import Snippet
from snippets.serializers import SnippetSerializer
from rest_framework import generics

class SnippetList(generics.ListCreateAPIView):
 queryset = Snippet.objects.all()
 serializer_class = SnippetSerializer

class SnippetDetail(generics.RetrieveUpdateDestroyAPIView):
 queryset = Snippet.objects.all()
 serializer_class = SnippetSerializer

Wow, that’s pretty concise. We’ve gotten a huge amount for free, and our code looks like good, clean, idiomatic Django.

Next we’ll move onto part 4 of the tutorial, where we’ll take a look at how we can deal with authentication and permissions for our API.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/travis-status.png
aday ago

sty .DATA/.FILES before re-rais.. =« + cld9a9

_images/search-filter.png
Search

Q search

_images/rest-framework-docs.png
Django Rest Framework Docs

[apilcigars

List Of Cigars

Allowed Methods: [GET, POST, OPTIONS |

Model: Cigar

Description:

Lists and creates cigars from the database.

Fields:

Name Type Read-only Default Min Max
manufacturer Related Field x

manufacturer_id Writable Field

url URL Field x 200
id Field

name Char Field 2
colour Char Field 30
gauge Integer Field

length Integer Field

price Model Field

notes Char Field

lapi/cigarsApk_id}

Cigar Details

/api/countries

List Of Countries

[api/countries/{pk_id}
Countries Details

[api/custom

A Custom View

_images/inline.png
Email Password () Rememberme Sign in

tutorial/quickstart.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Quickstart

We’re going to create a simple API to allow admin users to view and edit the users and groups in the system.

Project setup

Create a new Django project named tutorial, then start a new app called quickstart.

Create the project directory
mkdir tutorial
cd tutorial

Create a virtualenv to isolate our package dependencies locally
virtualenv env
source env/bin/activate # On Windows use `env\Scripts\activate`

Install Django and Django REST framework into the virtualenv
pip install django
pip install djangorestframework

Set up a new project with a single application
django-admin.py startproject tutorial . # Note the trailing '.' character
cd tutorial
django-admin.py startapp quickstart
cd ..

Now sync your database for the first time:

python manage.py migrate

We’ll also create an initial user named admin with a password of password. We’ll authenticate as that user later in our example.

python manage.py createsuperuser

Once you’ve set up a database and initial user created and ready to go, open up the app’s directory and we’ll get coding...

Serializers

First up we’re going to define some serializers. Let’s create a new module named tutorial/quickstart/serializers.py that we’ll use for our data representations.

from django.contrib.auth.models import User, Group
from rest_framework import serializers

class UserSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = User
 fields = ('url', 'username', 'email', 'groups')

class GroupSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Group
 fields = ('url', 'name')

Notice that we’re using hyperlinked relations in this case, with HyperlinkedModelSerializer. You can also use primary key and various other relationships, but hyperlinking is good RESTful design.

Views

Right, we’d better write some views then. Open tutorial/quickstart/views.py and get typing.

from django.contrib.auth.models import User, Group
from rest_framework import viewsets
from tutorial.quickstart.serializers import UserSerializer, GroupSerializer

class UserViewSet(viewsets.ModelViewSet):
 """
 API endpoint that allows users to be viewed or edited.
 """
 queryset = User.objects.all().order_by('-date_joined')
 serializer_class = UserSerializer

class GroupViewSet(viewsets.ModelViewSet):
 """
 API endpoint that allows groups to be viewed or edited.
 """
 queryset = Group.objects.all()
 serializer_class = GroupSerializer

Rather than write multiple views we’re grouping together all the common behavior into classes called ViewSets.

We can easily break these down into individual views if we need to, but using viewsets keeps the view logic nicely organized as well as being very concise.

URLs

Okay, now let’s wire up the API URLs. On to tutorial/urls.py...

from django.conf.urls import url, include
from rest_framework import routers
from tutorial.quickstart import views

router = routers.DefaultRouter()
router.register(r'users', views.UserViewSet)
router.register(r'groups', views.GroupViewSet)

Wire up our API using automatic URL routing.
Additionally, we include login URLs for the browsable API.
urlpatterns = [
 url(r'^', include(router.urls)),
 url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))
]

Because we’re using viewsets instead of views, we can automatically generate the URL conf for our API, by simply registering the viewsets with a router class.

Again, if we need more control over the API URLs we can simply drop down to using regular class based views, and writing the URL conf explicitly.

Finally, we’re including default login and logout views for use with the browsable API. That’s optional, but useful if your API requires authentication and you want to use the browsable API.

Settings

We’d also like to set a few global settings. We’d like to turn on pagination, and we want our API to only be accessible to admin users. The settings module will be in tutorial/settings.py

INSTALLED_APPS = (
 ...
 'rest_framework',
)

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': ('rest_framework.permissions.IsAdminUser',),
 'PAGE_SIZE': 10
}

Okay, we’re done.

Testing our API

We’re now ready to test the API we’ve built. Let’s fire up the server from the command line.

python ./manage.py runserver

We can now access our API, both from the command-line, using tools like curl...

bash: curl -H 'Accept: application/json; indent=4' -u admin:password http://127.0.0.1:8000/users/
{
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "email": "admin@example.com",
 "groups": [],
 "url": "http://127.0.0.1:8000/users/1/",
 "username": "admin"
 },
 {
 "email": "tom@example.com",
 "groups": [],
 "url": "http://127.0.0.1:8000/users/2/",
 "username": "tom"
 }
]
}

Or using the httpie [https://github.com/jakubroztocil/httpie#installation], command line tool...

bash: http -a username:password http://127.0.0.1:8000/users/

HTTP/1.1 200 OK
...
{
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "email": "admin@example.com",
 "groups": [],
 "url": "http://localhost:8000/users/1/",
 "username": "paul"
 },
 {
 "email": "tom@example.com",
 "groups": [],
 "url": "http://127.0.0.1:8000/users/2/",
 "username": "tom"
 }
]
}

Or directly through the browser...

[image: Quick start image]

If you’re working through the browser, make sure to login using the control in the top right corner.

Great, that was easy!

If you want to get a more in depth understanding of how REST framework fits together head on over to the tutorial, or start browsing the API guide.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/quickstart1.png
User List

[rp——
GET Jusers.
HTTP 200 0K

Vary: Accept
Content-Type: text/htnl
Allow: GET, POST, HEAD, OPTIONS

count: 2
next”s null
previous”: null
results

enail”: "adningexansle.con'

groups’
url”: "http://127.0.0.1:8000/users/1/
usernane”: “adnin

enail”: "tonsexanple.con'

groups’
url”: "http://127.0.0.1:8000/users/2/
Usemame

ena

tutorial/1-serialization.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

Tutorial 1: Serialization

Introduction

This tutorial will cover creating a simple pastebin code highlighting Web API. Along the way it will introduce the various components that make up REST framework, and give you a comprehensive understanding of how everything fits together.

The tutorial is fairly in-depth, so you should probably get a cookie and a cup of your favorite brew before getting started. If you just want a quick overview, you should head over to the quickstart documentation instead.

Note: The code for this tutorial is available in the tomchristie/rest-framework-tutorial [https://github.com/tomchristie/rest-framework-tutorial] repository on GitHub. The completed implementation is also online as a sandbox version for testing, available here [http://restframework.herokuapp.com/].

Setting up a new environment

Before we do anything else we’ll create a new virtual environment, using virtualenv [http://www.virtualenv.org/en/latest/index.html]. This will make sure our package configuration is kept nicely isolated from any other projects we’re working on.

virtualenv env
source env/bin/activate

Now that we’re inside a virtualenv environment, we can install our package requirements.

pip install django
pip install djangorestframework
pip install pygments # We'll be using this for the code highlighting

Note: To exit the virtualenv environment at any time, just type deactivate. For more information see the virtualenv documentation [http://www.virtualenv.org/en/latest/index.html].

Getting started

Okay, we’re ready to get coding.
To get started, let’s create a new project to work with.

cd ~
django-admin.py startproject tutorial
cd tutorial

Once that’s done we can create an app that we’ll use to create a simple Web API.

python manage.py startapp snippets

We’ll need to add our new snippets app and the rest_framework app to INSTALLED_APPS. Let’s edit the tutorial/settings.py file:

INSTALLED_APPS = (
 ...
 'rest_framework',
 'snippets',
)

We also need to wire up the root urlconf, in the tutorial/urls.py file, to include our snippet app’s URLs.

urlpatterns = [
 url(r'^', include('snippets.urls')),
]

Okay, we’re ready to roll.

Creating a model to work with

For the purposes of this tutorial we’re going to start by creating a simple Snippet model that is used to store code snippets. Go ahead and edit the snippets/models.py file. Note: Good programming practices include comments. Although you will find them in our repository version of this tutorial code, we have omitted them here to focus on the code itself.

from django.db import models
from pygments.lexers import get_all_lexers
from pygments.styles import get_all_styles

LEXERS = [item for item in get_all_lexers() if item[1]]
LANGUAGE_CHOICES = sorted([(item[1][0], item[0]) for item in LEXERS])
STYLE_CHOICES = sorted((item, item) for item in get_all_styles())

class Snippet(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 title = models.CharField(max_length=100, blank=True, default='')
 code = models.TextField()
 linenos = models.BooleanField(default=False)
 language = models.CharField(choices=LANGUAGE_CHOICES, default='python', max_length=100)
 style = models.CharField(choices=STYLE_CHOICES, default='friendly', max_length=100)

 class Meta:
 ordering = ('created',)

We’ll also need to create an initial migration for our snippet model, and sync the database for the first time.

python manage.py makemigrations snippets
python manage.py migrate

Creating a Serializer class

The first thing we need to get started on our Web API is to provide a way of serializing and deserializing the snippet instances into representations such as json. We can do this by declaring serializers that work very similar to Django’s forms. Create a file in the snippets directory named serializers.py and add the following.

from rest_framework import serializers
from snippets.models import Snippet, LANGUAGE_CHOICES, STYLE_CHOICES

class SnippetSerializer(serializers.Serializer):
 pk = serializers.IntegerField(read_only=True)
 title = serializers.CharField(required=False, allow_blank=True, max_length=100)
 code = serializers.CharField(style={'base_template': 'textarea.html'})
 linenos = serializers.BooleanField(required=False)
 language = serializers.ChoiceField(choices=LANGUAGE_CHOICES, default='python')
 style = serializers.ChoiceField(choices=STYLE_CHOICES, default='friendly')

 def create(self, validated_data):
 """
 Create and return a new `Snippet` instance, given the validated data.
 """
 return Snippet.objects.create(**validated_data)

 def update(self, instance, validated_data):
 """
 Update and return an existing `Snippet` instance, given the validated data.
 """
 instance.title = validated_data.get('title', instance.title)
 instance.code = validated_data.get('code', instance.code)
 instance.linenos = validated_data.get('linenos', instance.linenos)
 instance.language = validated_data.get('language', instance.language)
 instance.style = validated_data.get('style', instance.style)
 instance.save()
 return instance

The first part of the serializer class defines the fields that get serialized/deserialized. The create() and update() methods define how fully fledged instances are created or modified when calling serializer.save()

A serializer class is very similar to a Django Form class, and includes similar validation flags on the various fields, such as required, max_length and default.

The field flags can also control how the serializer should be displayed in certain circumstances, such as when rendering to HTML. The {'base_template': 'textarea.html'} flag above is equivalent to using widget=widgets.Textarea on a Django Form class. This is particularly useful for controlling how the browsable API should be displayed, as we’ll see later in the tutorial.

We can actually also save ourselves some time by using the ModelSerializer class, as we’ll see later, but for now we’ll keep our serializer definition explicit.

Working with Serializers

Before we go any further we’ll familiarize ourselves with using our new Serializer class. Let’s drop into the Django shell.

python manage.py shell

Okay, once we’ve got a few imports out of the way, let’s create a couple of code snippets to work with.

from snippets.models import Snippet
from snippets.serializers import SnippetSerializer
from rest_framework.renderers import JSONRenderer
from rest_framework.parsers import JSONParser

snippet = Snippet(code='foo = "bar"\n')
snippet.save()

snippet = Snippet(code='print "hello, world"\n')
snippet.save()

We’ve now got a few snippet instances to play with. Let’s take a look at serializing one of those instances.

serializer = SnippetSerializer(snippet)
serializer.data
{'pk': 2, 'title': u'', 'code': u'print "hello, world"\n', 'linenos': False, 'language': u'python', 'style': u'friendly'}

At this point we’ve translated the model instance into Python native datatypes. To finalize the serialization process we render the data into json.

content = JSONRenderer().render(serializer.data)
content
'{"pk": 2, "title": "", "code": "print \\"hello, world\\"\\n", "linenos": false, "language": "python", "style": "friendly"}'

Deserialization is similar. First we parse a stream into Python native datatypes...

from django.utils.six import BytesIO

stream = BytesIO(content)
data = JSONParser().parse(stream)

...then we restore those native datatypes into to a fully populated object instance.

serializer = SnippetSerializer(data=data)
serializer.is_valid()
True
serializer.validated_data
OrderedDict([('title', ''), ('code', 'print "hello, world"\n'), ('linenos', False), ('language', 'python'), ('style', 'friendly')])
serializer.save()
<Snippet: Snippet object>

Notice how similar the API is to working with forms. The similarity should become even more apparent when we start writing views that use our serializer.

We can also serialize querysets instead of model instances. To do so we simply add a many=True flag to the serializer arguments.

serializer = SnippetSerializer(Snippet.objects.all(), many=True)
serializer.data
[OrderedDict([('pk', 1), ('title', u''), ('code', u'foo = "bar"\n'), ('linenos', False), ('language', 'python'), ('style', 'friendly')]), OrderedDict([('pk', 2), ('title', u''), ('code', u'print "hello, world"\n'), ('linenos', False), ('language', 'python'), ('style', 'friendly')]), OrderedDict([('pk', 3), ('title', u''), ('code', u'print "hello, world"'), ('linenos', False), ('language', 'python'), ('style', 'friendly')])]

Using ModelSerializers

Our SnippetSerializer class is replicating a lot of information that’s also contained in the Snippet model. It would be nice if we could keep our code a bit more concise.

In the same way that Django provides both Form classes and ModelForm classes, REST framework includes both Serializer classes, and ModelSerializer classes.

Let’s look at refactoring our serializer using the ModelSerializer class.
Open the file snippets/serializers.py again, and replace the SnippetSerializer class with the following.

class SnippetSerializer(serializers.ModelSerializer):
 class Meta:
 model = Snippet
 fields = ('id', 'title', 'code', 'linenos', 'language', 'style')

One nice property that serializers have is that you can inspect all the fields in a serializer instance, by printing its representation. Open the Django shell with python manage.py shell, then try the following:

>>> from snippets.serializers import SnippetSerializer
>>> serializer = SnippetSerializer()
>>> print(repr(serializer))
SnippetSerializer():
 id = IntegerField(label='ID', read_only=True)
 title = CharField(allow_blank=True, max_length=100, required=False)
 code = CharField(style={'base_template': 'textarea.html'})
 linenos = BooleanField(required=False)
 language = ChoiceField(choices=[('Clipper', 'FoxPro'), ('Cucumber', 'Gherkin'), ('RobotFramework', 'RobotFramework'), ('abap', 'ABAP'), ('ada', 'Ada')...
 style = ChoiceField(choices=[('autumn', 'autumn'), ('borland', 'borland'), ('bw', 'bw'), ('colorful', 'colorful')...

It’s important to remember that ModelSerializer classes don’t do anything particularly magical, they are simply a shortcut for creating serializer classes:

		An automatically determined set of fields.

		Simple default implementations for the create() and update() methods.

Writing regular Django views using our Serializer

Let’s see how we can write some API views using our new Serializer class.
For the moment we won’t use any of REST framework’s other features, we’ll just write the views as regular Django views.

We’ll start off by creating a subclass of HttpResponse that we can use to render any data we return into json.

Edit the snippets/views.py file, and add the following.

from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt
from rest_framework.renderers import JSONRenderer
from rest_framework.parsers import JSONParser
from snippets.models import Snippet
from snippets.serializers import SnippetSerializer

class JSONResponse(HttpResponse):
 """
 An HttpResponse that renders its content into JSON.
 """
 def __init__(self, data, **kwargs):
 content = JSONRenderer().render(data)
 kwargs['content_type'] = 'application/json'
 super(JSONResponse, self).__init__(content, **kwargs)

The root of our API is going to be a view that supports listing all the existing snippets, or creating a new snippet.

@csrf_exempt
def snippet_list(request):
 """
 List all code snippets, or create a new snippet.
 """
 if request.method == 'GET':
 snippets = Snippet.objects.all()
 serializer = SnippetSerializer(snippets, many=True)
 return JSONResponse(serializer.data)

 elif request.method == 'POST':
 data = JSONParser().parse(request)
 serializer = SnippetSerializer(data=data)
 if serializer.is_valid():
 serializer.save()
 return JSONResponse(serializer.data, status=201)
 return JSONResponse(serializer.errors, status=400)

Note that because we want to be able to POST to this view from clients that won’t have a CSRF token we need to mark the view as csrf_exempt. This isn’t something that you’d normally want to do, and REST framework views actually use more sensible behavior than this, but it’ll do for our purposes right now.

We’ll also need a view which corresponds to an individual snippet, and can be used to retrieve, update or delete the snippet.

@csrf_exempt
def snippet_detail(request, pk):
 """
 Retrieve, update or delete a code snippet.
 """
 try:
 snippet = Snippet.objects.get(pk=pk)
 except Snippet.DoesNotExist:
 return HttpResponse(status=404)

 if request.method == 'GET':
 serializer = SnippetSerializer(snippet)
 return JSONResponse(serializer.data)

 elif request.method == 'PUT':
 data = JSONParser().parse(request)
 serializer = SnippetSerializer(snippet, data=data)
 if serializer.is_valid():
 serializer.save()
 return JSONResponse(serializer.data)
 return JSONResponse(serializer.errors, status=400)

 elif request.method == 'DELETE':
 snippet.delete()
 return HttpResponse(status=204)

Finally we need to wire these views up. Create the snippets/urls.py file:

from django.conf.urls import url
from snippets import views

urlpatterns = [
 url(r'^snippets/$', views.snippet_list),
 url(r'^snippets/(?P<pk>[0-9]+)/$', views.snippet_detail),
]

It’s worth noting that there are a couple of edge cases we’re not dealing with properly at the moment. If we send malformed json, or if a request is made with a method that the view doesn’t handle, then we’ll end up with a 500 “server error” response. Still, this’ll do for now.

Testing our first attempt at a Web API

Now we can start up a sample server that serves our snippets.

Quit out of the shell...

quit()

...and start up Django’s development server.

python manage.py runserver

Validating models...

0 errors found
Django version 1.8.3, using settings 'tutorial.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

In another terminal window, we can test the server.

We can test our API using using curl [http://curl.haxx.se] or httpie [https://github.com/jakubroztocil/httpie#installation]. Httpie is a user friendly http client that’s written in Python. Let’s install that.

You can install httpie using pip:

pip install httpie

Finally, we can get a list of all of the snippets:

http http://127.0.0.1:8000/snippets/

HTTP/1.1 200 OK
...
[
 {
 "id": 1,
 "title": "",
 "code": "foo = \"bar\"\n",
 "linenos": false,
 "language": "python",
 "style": "friendly"
 },
 {
 "id": 2,
 "title": "",
 "code": "print \"hello, world\"\n",
 "linenos": false,
 "language": "python",
 "style": "friendly"
 }
]

Or we can get a particular snippet by referencing its id:

http http://127.0.0.1:8000/snippets/2/

HTTP/1.1 200 OK
...
{
 "id": 2,
 "title": "",
 "code": "print \"hello, world\"\n",
 "linenos": false,
 "language": "python",
 "style": "friendly"
}

Similarly, you can have the same json displayed by visiting these URLs in a web browser.

Where are we now

We’re doing okay so far, we’ve got a serialization API that feels pretty similar to Django’s Forms API, and some regular Django views.

Our API views don’t do anything particularly special at the moment, beyond serving json responses, and there are some error handling edge cases we’d still like to clean up, but it’s a functioning Web API.

We’ll see how we can start to improve things in part 2 of the tutorial.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/django-rest-swagger.png
swagge!

http:/localhost:8000/api-docs/ api_key

Explore

/countries show/Hide | List Operations | Expand Operations = Raw
/api/countries/ Gets a list of countries
/api/countries/ Gets a list of countries
Japi/countries/Apky/ Detalled view of the country
Japi/countries/Apky/ Detailed view of the country
Japi/countries/Apky/ Detalled view of the country
Japi/countries/Apky/ Detailed view of the country

/manufacturers Show/Hide | List Operations | Expand Operations | Raw

Icigars Show/Hide | List Operations | Expand Operations | Raw

/custom show/Hide | List Operations | Expand Operations | Raw

_images/admin1.png
Api Root

User List

User List

Username
tester
another
admin
tom

example

Email
testing@example.com
foo@tom.com
admin@example.com
tom@foo.net

example@foobar.com

Groups

Moderators, Contractors

Moderators

Contractors

search.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/quickstart2.png
User List

[rp——
GET Jusers.
HTTP 200 0K

Vary: Accept
Content-Type: text/htnl
Allow: GET, POST, HEAD, OPTIONS

count: 2
next”s null
previous”: null
results

enail”: "adningexansle.con'

groups’
url”: "http://127.0.0.1:8000/users/1/
usernane”: “adnin

enail”: "tonsexanple.con'

groups’
url”: "http://127.0.0.1:8000/users/2/
Usemame

ena

_images/pages-pagination.png
GET /users/7page=3

_images/labels-and-milestones.png
% Documentation

® Needs confirmation

® Needs design decision

® Needs further review

® Needs info

% Release

2.4 Release
[i# Due by September 1, 2014 (D Last updated about 8 hours ago

3.0 Release

[Due by November 1, 2014 @ Last updated about 11 hours ago
‘The ‘serializer improvements' base goal

3.1 Release

1 Due by February 1, 2015 ® Last updated about 8 hours ago
‘The feature improvements'stretch goal.

3.2 Release

1 Due by April 1, 2015 (® Last updated about 8 hours ago
‘The ‘adrin interface stretch goal.

api-guide/reverse.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: reverse.py

Returning URLs

The central feature that distinguishes the REST architectural style from other network-based styles is its emphasis on a uniform interface between components.

—

 Roy Fielding, Architectural Styles and the Design of Network-based Software Architectures [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5]

As a rule, it’s probably better practice to return absolute URIs from your Web APIs, such as http://example.com/foobar, rather than returning relative URIs, such as /foobar.

The advantages of doing so are:

		It’s more explicit.

		It leaves less work for your API clients.

		There’s no ambiguity about the meaning of the string when it’s found in representations such as JSON that do not have a native URI type.

		It makes it easy to do things like markup HTML representations with hyperlinks.

REST framework provides two utility functions to make it more simple to return absolute URIs from your Web API.

There’s no requirement for you to use them, but if you do then the self-describing API will be able to automatically hyperlink its output for you, which makes browsing the API much easier.

reverse

Signature: reverse(viewname, *args, **kwargs)

Has the same behavior as django.core.urlresolvers.reverse [https://docs.djangoproject.com/en/dev/topics/http/urls/#reverse], except that it returns a fully qualified URL, using the request to determine the host and port.

You should include the request as a keyword argument to the function, for example:

from rest_framework.reverse import reverse
from rest_framework.views import APIView
from django.utils.timezone import now

class APIRootView(APIView):
 def get(self, request):
 year = now().year
 data = {
 ...
 'year-summary-url': reverse('year-summary', args=[year], request=request)
 }
 return Response(data)

reverse_lazy

Signature: reverse_lazy(viewname, *args, **kwargs)

Has the same behavior as django.core.urlresolvers.reverse_lazy [https://docs.djangoproject.com/en/dev/topics/http/urls/#reverse-lazy], except that it returns a fully qualified URL, using the request to determine the host and port.

As with the reverse function, you should include the request as a keyword argument to the function, for example:

api_root = reverse_lazy('api-root', request=request)

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/routers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: routers.py

Routers

Resource routing allows you to quickly declare all of the common routes for a given resourceful controller. Instead of declaring separate routes for your index... a resourceful route declares them in a single line of code.

—

 Ruby on Rails Documentation [http://guides.rubyonrails.org/routing.html]

Some Web frameworks such as Rails provide functionality for automatically determining how the URLs for an application should be mapped to the logic that deals with handling incoming requests.

REST framework adds support for automatic URL routing to Django, and provides you with a simple, quick and consistent way of wiring your view logic to a set of URLs.

Usage

Here’s an example of a simple URL conf, that uses SimpleRouter.

from rest_framework import routers

router = routers.SimpleRouter()
router.register(r'users', UserViewSet)
router.register(r'accounts', AccountViewSet)
urlpatterns = router.urls

There are two mandatory arguments to the register() method:

		prefix - The URL prefix to use for this set of routes.

		viewset - The viewset class.

Optionally, you may also specify an additional argument:

		base_name - The base to use for the URL names that are created. If unset the basename will be automatically generated based on the queryset attribute of the viewset, if it has one. Note that if the viewset does not include a queryset attribute then you must set base_name when registering the viewset.

The example above would generate the following URL patterns:

		URL pattern: ^users/$ Name: 'user-list'

		URL pattern: ^users/{pk}/$ Name: 'user-detail'

		URL pattern: ^accounts/$ Name: 'account-list'

		URL pattern: ^accounts/{pk}/$ Name: 'account-detail'

Note: The base_name argument is used to specify the initial part of the view name pattern. In the example above, that’s the user or account part.

Typically you won’t need to specify the base_name argument, but if you have a viewset where you’ve defined a custom get_queryset method, then the viewset may not have a .queryset attribute set. If you try to register that viewset you’ll see an error like this:

'base_name' argument not specified, and could not automatically determine the name from the viewset, as it does not have a '.queryset' attribute.

This means you’ll need to explicitly set the base_name argument when registering the viewset, as it could not be automatically determined from the model name.

Using include with routers

The .urls attribute on a router instance is simply a standard list of URL patterns. There are a number of different styles for how you can include these URLs.

For example, you can append router.urls to a list of existing views…

router = routers.SimpleRouter()
router.register(r'users', UserViewSet)
router.register(r'accounts', AccountViewSet)

urlpatterns = [
 url(r'^forgot-password/$', ForgotPasswordFormView.as_view()),
]

urlpatterns += router.urls

Alternatively you can use Django’s include function, like so…

urlpatterns = [
 url(r'^forgot-password/$', ForgotPasswordFormView.as_view()),
 url(r'^', include(router.urls)),
]

Router URL patterns can also be namespaces.

urlpatterns = [
 url(r'^forgot-password/$', ForgotPasswordFormView.as_view()),
 url(r'^api/', include(router.urls, namespace='api')),
]

If using namespacing with hyperlinked serializers you’ll also need to ensure that any view_name parameters on the serializers correctly reflect the namespace. In the example above you’d need to include a parameter such as view_name='api:user-detail' for serializer fields hyperlinked to the user detail view.

Extra link and actions

Any methods on the viewset decorated with @detail_route or @list_route will also be routed.
For example, given a method like this on the UserViewSet class:

from myapp.permissions import IsAdminOrIsSelf
from rest_framework.decorators import detail_route

class UserViewSet(ModelViewSet):
 ...

 @detail_route(methods=['post'], permission_classes=[IsAdminOrIsSelf])
 def set_password(self, request, pk=None):
 ...

The following URL pattern would additionally be generated:

		URL pattern: ^users/{pk}/set_password/$ Name: 'user-set-password'

If you do not want to use the default URL generated for your custom action, you can instead use the url_path parameter to customize it.

For example, if you want to change the URL for our custom action to ^users/{pk}/change-password/$, you could write:

from myapp.permissions import IsAdminOrIsSelf
from rest_framework.decorators import detail_route

class UserViewSet(ModelViewSet):
 ...

 @detail_route(methods=['post'], permission_classes=[IsAdminOrIsSelf], url_path='change-password')
 def set_password(self, request, pk=None):
 ...

The above example would now generate the following URL pattern:

		URL pattern: ^users/{pk}/change-password/$ Name: 'user-change-password'

For more information see the viewset documentation on marking extra actions for routing.

API Guide

SimpleRouter

This router includes routes for the standard set of list, create, retrieve, update, partial_update and destroy actions. The viewset can also mark additional methods to be routed, using the @detail_route or @list_route decorators.

 		URL Style		HTTP Method		Action		URL Name

 		{prefix}/		GET		list		{basename}-list

 		POST		create

 		{prefix}/{methodname}/		GET, or as specified by `methods` argument		`@list_route` decorated method		{basename}-{methodname}

 		{prefix}/{lookup}/		GET		retrieve		{basename}-detail

 		PUT		update

 		PATCH		partial_update

 		DELETE		destroy

 		{prefix}/{lookup}/{methodname}/		GET, or as specified by `methods` argument		`@detail_route` decorated method		{basename}-{methodname}

By default the URLs created by SimpleRouter are appended with a trailing slash.
This behavior can be modified by setting the trailing_slash argument to False when instantiating the router. For example:

router = SimpleRouter(trailing_slash=False)

Trailing slashes are conventional in Django, but are not used by default in some other frameworks such as Rails. Which style you choose to use is largely a matter of preference, although some javascript frameworks may expect a particular routing style.

The router will match lookup values containing any characters except slashes and period characters. For a more restrictive (or lenient) lookup pattern, set the lookup_value_regex attribute on the viewset. For example, you can limit the lookup to valid UUIDs:

class MyModelViewSet(mixins.RetrieveModelMixin, viewsets.GenericViewSet):
 lookup_field = 'my_model_id'
 lookup_value_regex = '[0-9a-f]{32}'

DefaultRouter

This router is similar to SimpleRouter as above, but additionally includes a default API root view, that returns a response containing hyperlinks to all the list views. It also generates routes for optional .json style format suffixes.

 		URL Style		HTTP Method		Action		URL Name

 		[.format]		GET		automatically generated root view		api-root

 		{prefix}/[.format]		GET		list		{basename}-list

 		POST		create

 		{prefix}/{methodname}/[.format]		GET, or as specified by `methods` argument		`@list_route` decorated method		{basename}-{methodname}

 		{prefix}/{lookup}/[.format]		GET		retrieve		{basename}-detail

 		PUT		update

 		PATCH		partial_update

 		DELETE		destroy

 		{prefix}/{lookup}/{methodname}/[.format]		GET, or as specified by `methods` argument		`@detail_route` decorated method		{basename}-{methodname}

As with SimpleRouter the trailing slashes on the URL routes can be removed by setting the trailing_slash argument to False when instantiating the router.

router = DefaultRouter(trailing_slash=False)

Custom Routers

Implementing a custom router isn’t something you’d need to do very often, but it can be useful if you have specific requirements about how the your URLs for your API are structured. Doing so allows you to encapsulate the URL structure in a reusable way that ensures you don’t have to write your URL patterns explicitly for each new view.

The simplest way to implement a custom router is to subclass one of the existing router classes. The .routes attribute is used to template the URL patterns that will be mapped to each viewset. The .routes attribute is a list of Route named tuples.

The arguments to the Route named tuple are:

url: A string representing the URL to be routed. May include the following format strings:

		{prefix} - The URL prefix to use for this set of routes.

		{lookup} - The lookup field used to match against a single instance.

		{trailing_slash} - Either a ‘/’ or an empty string, depending on the trailing_slash argument.

mapping: A mapping of HTTP method names to the view methods

name: The name of the URL as used in reverse calls. May include the following format string:

		{basename} - The base to use for the URL names that are created.

initkwargs: A dictionary of any additional arguments that should be passed when instantiating the view. Note that the suffix argument is reserved for identifying the viewset type, used when generating the view name and breadcrumb links.

Customizing dynamic routes

You can also customize how the @list_route and @detail_route decorators are routed.
To route either or both of these decorators, include a DynamicListRoute and/or DynamicDetailRoute named tuple in the .routes list.

The arguments to DynamicListRoute and DynamicDetailRoute are:

url: A string representing the URL to be routed. May include the same format strings as Route, and additionally accepts the {methodname} and {methodnamehyphen} format strings.

name: The name of the URL as used in reverse calls. May include the following format strings: {basename}, {methodname} and {methodnamehyphen}.

initkwargs: A dictionary of any additional arguments that should be passed when instantiating the view.

Example

The following example will only route to the list and retrieve actions, and does not use the trailing slash convention.

from rest_framework.routers import Route, DynamicDetailRoute, SimpleRouter

class CustomReadOnlyRouter(SimpleRouter):
 """
 A router for read-only APIs, which doesn't use trailing slashes.
 """
 routes = [
 Route(
 url=r'^{prefix}$',
 mapping={'get': 'list'},
 name='{basename}-list',
 initkwargs={'suffix': 'List'}
),
 Route(
 url=r'^{prefix}/{lookup}$',
 mapping={'get': 'retrieve'},
 name='{basename}-detail',
 initkwargs={'suffix': 'Detail'}
),
 DynamicDetailRoute(
 url=r'^{prefix}/{lookup}/{methodnamehyphen}$',
 name='{basename}-{methodnamehyphen}',
 initkwargs={}
)
]

Let’s take a look at the routes our CustomReadOnlyRouter would generate for a simple viewset.

views.py:

class UserViewSet(viewsets.ReadOnlyModelViewSet):
 """
 A viewset that provides the standard actions
 """
 queryset = User.objects.all()
 serializer_class = UserSerializer
 lookup_field = 'username'

 @detail_route()
 def group_names(self, request):
 """
 Returns a list of all the group names that the given
 user belongs to.
 """
 user = self.get_object()
 groups = user.groups.all()
 return Response([group.name for group in groups])

urls.py:

router = CustomReadOnlyRouter()
router.register('users', UserViewSet)
urlpatterns = router.urls

The following mappings would be generated...

 		URL		HTTP Method		Action		URL Name

 		/users		GET		list		user-list

 		/users/{username}		GET		retrieve		user-detail

 		/users/{username}/group-names		GET		group_names		user-group-names

For another example of setting the .routes attribute, see the source code for the SimpleRouter class.

Advanced custom routers

If you want to provide totally custom behavior, you can override BaseRouter and override the get_urls(self) method. The method should inspect the registered viewsets and return a list of URL patterns. The registered prefix, viewset and basename tuples may be inspected by accessing the self.registry attribute.

You may also want to override the get_default_base_name(self, viewset) method, or else always explicitly set the base_name argument when registering your viewsets with the router.

Third Party Packages

The following third party packages are also available.

DRF Nested Routers

The drf-nested-routers package [https://github.com/alanjds/drf-nested-routers] provides routers and relationship fields for working with nested resources.

ModelRouter (wq.db.rest)

The wq.db package [http://wq.io/wq.db] provides an advanced ModelRouter [http://wq.io/docs/router] class (and singleton instance) that extends DefaultRouter with a register_model() API. Much like Django’s admin.site.register, the only required argument to rest.router.register_model is a model class. Reasonable defaults for a url prefix, serializer, and viewset will be inferred from the model and global configuration.

from wq.db import rest
from myapp.models import MyModel

rest.router.register_model(MyModel)

DRF-extensions

The DRF-extensions package [http://chibisov.github.io/drf-extensions/docs/] provides routers [http://chibisov.github.io/drf-extensions/docs/#routers] for creating nested viewsets [http://chibisov.github.io/drf-extensions/docs/#nested-routes], collection level controllers [http://chibisov.github.io/drf-extensions/docs/#collection-level-controllers] with customizable endpoint names [http://chibisov.github.io/drf-extensions/docs/#controller-endpoint-name].

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/serializers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: serializers.py

Serializers

Expanding the usefulness of the serializers is something that we would
like to address. However, it’s not a trivial problem, and it
will take some serious design work.

—

 Russell Keith-Magee, Django users group [https://groups.google.com/d/topic/django-users/sVFaOfQi4wY/discussion]

Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON, XML or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.

The serializers in REST framework work very similarly to Django’s Form and ModelForm classes. We provide a Serializer class which gives you a powerful, generic way to control the output of your responses, as well as a ModelSerializer class which provides a useful shortcut for creating serializers that deal with model instances and querysets.

Declaring Serializers

Let’s start by creating a simple object we can use for example purposes:

from datetime import datetime

class Comment(object):
 def __init__(self, email, content, created=None):
 self.email = email
 self.content = content
 self.created = created or datetime.now()

comment = Comment(email='leila@example.com', content='foo bar')

We’ll declare a serializer that we can use to serialize and deserialize data that corresponds to Comment objects.

Declaring a serializer looks very similar to declaring a form:

from rest_framework import serializers

class CommentSerializer(serializers.Serializer):
 email = serializers.EmailField()
 content = serializers.CharField(max_length=200)
 created = serializers.DateTimeField()

Serializing objects

We can now use CommentSerializer to serialize a comment, or list of comments. Again, using the Serializer class looks a lot like using a Form class.

serializer = CommentSerializer(comment)
serializer.data
{'email': u'leila@example.com', 'content': u'foo bar', 'created': datetime.datetime(2012, 8, 22, 16, 20, 9, 822774)}

At this point we’ve translated the model instance into Python native datatypes. To finalise the serialization process we render the data into json.

from rest_framework.renderers import JSONRenderer

json = JSONRenderer().render(serializer.data)
json
'{"email": "leila@example.com", "content": "foo bar", "created": "2012-08-22T16:20:09.822"}'

Deserializing objects

Deserialization is similar. First we parse a stream into Python native datatypes...

from django.utils.six import BytesIO
from rest_framework.parsers import JSONParser

stream = BytesIO(json)
data = JSONParser().parse(stream)

...then we restore those native datatypes into a dictionary of validated data.

serializer = CommentSerializer(data=data)
serializer.is_valid()
True
serializer.validated_data
{'content': 'foo bar', 'email': 'leila@example.com', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}

Saving instances

If we want to be able to return complete object instances based on the validated data we need to implement one or both of the .create() and update() methods. For example:

class CommentSerializer(serializers.Serializer):
 email = serializers.EmailField()
 content = serializers.CharField(max_length=200)
 created = serializers.DateTimeField()

 def create(self, validated_data):
 return Comment(**validated_data)

 def update(self, instance, validated_data):
 instance.email = validated_data.get('email', instance.email)
 instance.content = validated_data.get('content', instance.content)
 instance.created = validated_data.get('created', instance.created)
 return instance

If your object instances correspond to Django models you’ll also want to ensure that these methods save the object to the database. For example, if Comment was a Django model, the methods might look like this:

 def create(self, validated_data):
 return Comment.objects.create(**validated_data)

 def update(self, instance, validated_data):
 instance.email = validated_data.get('email', instance.email)
 instance.content = validated_data.get('content', instance.content)
 instance.created = validated_data.get('created', instance.created)
 instance.save()
 return instance

Now when deserializing data, we can call .save() to return an object instance, based on the validated data.

comment = serializer.save()

Calling .save() will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:

.save() will create a new instance.
serializer = CommentSerializer(data=data)

.save() will update the existing `comment` instance.
serializer = CommentSerializer(comment, data=data)

Both the .create() and .update() methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.

Passing additional attributes to .save()

Sometimes you’ll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.

You can do so by including additional keyword arguments when calling .save(). For example:

serializer.save(owner=request.user)

Any additional keyword arguments will be included in the validated_data argument when .create() or .update() are called.

Overriding .save() directly.

In some cases the .create() and .update() method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.

In these cases you might instead choose to override .save() directly, as being more readable and meaningful.

For example:

class ContactForm(serializers.Serializer):
 email = serializers.EmailField()
 message = serializers.CharField()

 def save(self):
 email = self.validated_data['email']
 message = self.validated_data['message']
 send_email(from=email, message=message)

Note that in the case above we’re now having to access the serializer .validated_data property directly.

Validation

When deserializing data, you always need to call is_valid() before attempting to access the validated data, or save an object instance. If any validation errors occur, the .errors property will contain a dictionary representing the resulting error messages. For example:

serializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'})
serializer.is_valid()
False
serializer.errors
{'email': [u'Enter a valid e-mail address.'], 'created': [u'This field is required.']}

Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The non_field_errors key may also be present, and will list any general validation errors. The name of the non_field_errors key may be customized using the NON_FIELD_ERRORS_KEY REST framework setting.

When deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.

Raising an exception on invalid data

The .is_valid() method takes an optional raise_exception flag that will cause it to raise a serializers.ValidationError exception if there are validation errors.

These exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return HTTP 400 Bad Request responses by default.

Return a 400 response if the data was invalid.
serializer.is_valid(raise_exception=True)

Field-level validation

You can specify custom field-level validation by adding .validate_<field_name> methods to your Serializer subclass. These are similar to the .clean_<field_name> methods on Django forms.

These methods take a single argument, which is the field value that requires validation.

Your validate_<field_name> methods should return the validated value or raise a serializers.ValidationError. For example:

from rest_framework import serializers

class BlogPostSerializer(serializers.Serializer):
 title = serializers.CharField(max_length=100)
 content = serializers.CharField()

 def validate_title(self, value):
 """
 Check that the blog post is about Django.
 """
 if 'django' not in value.lower():
 raise serializers.ValidationError("Blog post is not about Django")
 return value

Note: If your <field_name> is declared on your serializer with the parameter required=False then this validation step will not take place if the field is not included.

Object-level validation

To do any other validation that requires access to multiple fields, add a method called .validate() to your Serializer subclass. This method takes a single argument, which is a dictionary of field values. It should raise a ValidationError if necessary, or just return the validated values. For example:

from rest_framework import serializers

class EventSerializer(serializers.Serializer):
 description = serializers.CharField(max_length=100)
 start = serializers.DateTimeField()
 finish = serializers.DateTimeField()

 def validate(self, data):
 """
 Check that the start is before the stop.
 """
 if data['start'] > data['finish']:
 raise serializers.ValidationError("finish must occur after start")
 return data

Validators

Individual fields on a serializer can include validators, by declaring them on the field instance, for example:

def multiple_of_ten(value):
 if value % 10 != 0:
 raise serializers.ValidationError('Not a multiple of ten')

class GameRecord(serializers.Serializer):
 score = IntegerField(validators=[multiple_of_ten])
 ...

Serializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner Meta class, like so:

class EventSerializer(serializers.Serializer):
 name = serializers.CharField()
 room_number = serializers.IntegerField(choices=[101, 102, 103, 201])
 date = serializers.DateField()

 class Meta:
 # Each room only has one event per day.
 validators = UniqueTogetherValidator(
 queryset=Event.objects.all(),
 fields=['room_number', 'date']
)

For more information see the validators documentation.

Accessing the initial data and instance

When passing an initial object or queryset to a serializer instance, the object will be made available as .instance. If no initial object is passed then the .instance attribute will be None.

When passing data to a serializer instance, the unmodified data will be made available as .initial_data. If the data keyword argument is not passed then the .initial_data attribute will not exist.

Partial updates

By default, serializers must be passed values for all required fields or they will raise validation errors. You can use the partial argument in order to allow partial updates.

Update `comment` with partial data
serializer = CommentSerializer(comment, data={'content': u'foo bar'}, partial=True)

Dealing with nested objects

The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.

The Serializer class is itself a type of Field, and can be used to represent relationships where one object type is nested inside another.

class UserSerializer(serializers.Serializer):
 email = serializers.EmailField()
 username = serializers.CharField(max_length=100)

class CommentSerializer(serializers.Serializer):
 user = UserSerializer()
 content = serializers.CharField(max_length=200)
 created = serializers.DateTimeField()

If a nested representation may optionally accept the None value you should pass the required=False flag to the nested serializer.

class CommentSerializer(serializers.Serializer):
 user = UserSerializer(required=False) # May be an anonymous user.
 content = serializers.CharField(max_length=200)
 created = serializers.DateTimeField()

Similarly if a nested representation should be a list of items, you should pass the many=True flag to the nested serialized.

class CommentSerializer(serializers.Serializer):
 user = UserSerializer(required=False)
 edits = EditItemSerializer(many=True) # A nested list of 'edit' items.
 content = serializers.CharField(max_length=200)
 created = serializers.DateTimeField()

Writable nested representations

When dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.

serializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'})
serializer.is_valid()
False
serializer.errors
{'user': {'email': [u'Enter a valid e-mail address.']}, 'created': [u'This field is required.']}

Similarly, the .validated_data property will include nested data structures.

Writing .create() methods for nested representations

If you’re supporting writable nested representations you’ll need to write .create() or .update() methods that handle saving multiple objects.

The following example demonstrates how you might handle creating a user with a nested profile object.

class UserSerializer(serializers.ModelSerializer):
 profile = ProfileSerializer()

 class Meta:
 model = User
 fields = ('username', 'email', 'profile')

 def create(self, validated_data):
 profile_data = validated_data.pop('profile')
 user = User.objects.create(**validated_data)
 Profile.objects.create(user=user, **profile_data)
 return user

Writing .update() methods for nested representations

For updates you’ll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is None, or not provided, which of the following should occur?

		Set the relationship to NULL in the database.

		Delete the associated instance.

		Ignore the data and leave the instance as it is.

		Raise a validation error.

Here’s an example for an update() method on our previous UserSerializer class.

 def update(self, instance, validated_data):
 profile_data = validated_data.pop('profile')
 # Unless the application properly enforces that this field is
 # always set, the follow could raise a `DoesNotExist`, which
 # would need to be handled.
 profile = instance.profile

 instance.username = validated_data.get('username', instance.username)
 instance.email = validated_data.get('email', instance.email)
 instance.save()

 profile.is_premium_member = profile_data.get(
 'is_premium_member',
 profile.is_premium_member
)
 profile.has_support_contract = profile_data.get(
 'has_support_contract',
 profile.has_support_contract
)
 profile.save()

 return instance

Because the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default ModelSerializer .create() and .update() methods do not include support for writable nested representations.

It is possible that a third party package, providing automatic support some kinds of automatic writable nested representations may be released alongside the 3.1 release.

Handling saving related instances in model manager classes

An alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.

For example, suppose we wanted to ensure that User instances and Profile instances are always created together as a pair. We might write a custom manager class that looks something like this:

class UserManager(models.Manager):
 ...

 def create(self, username, email, is_premium_member=False, has_support_contract=False):
 user = User(username=username, email=email)
 user.save()
 profile = Profile(
 user=user,
 is_premium_member=is_premium_member,
 has_support_contract=has_support_contract
)
 profile.save()
 return user

This manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our .create() method on the serializer class can now be re-written to use the new manager method.

def create(self, validated_data):
 return User.objects.create(
 username=validated_data['username'],
 email=validated_data['email']
 is_premium_member=validated_data['profile']['is_premium_member']
 has_support_contract=validated_data['profile']['has_support_contract']
)

For more details on this approach see the Django documentation on model managers, and this blogpost on using model and manager classes.

Dealing with multiple objects

The Serializer class can also handle serializing or deserializing lists of objects.

Serializing multiple objects

To serialize a queryset or list of objects instead of a single object instance, you should pass the many=True flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.

queryset = Book.objects.all()
serializer = BookSerializer(queryset, many=True)
serializer.data
[
{'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},
{'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},
{'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'}
]

Deserializing multiple objects

The default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the ListSerializer documentation below.

Including extra context

There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you’re using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.

You can provide arbitrary additional context by passing a context argument when instantiating the serializer. For example:

serializer = AccountSerializer(account, context={'request': request})
serializer.data
{'id': 6, 'owner': u'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}

The context dictionary can be used within any serializer field logic, such as a custom .to_representation() method, by accessing the self.context attribute.

ModelSerializer

Often you’ll want serializer classes that map closely to Django model definitions.

The ModelSerializer class provides a shortcut that lets you automatically create a Serializer class with fields that correspond to the Model fields.

The ModelSerializer class is the same as a regular Serializer class, except that:

		It will automatically generate a set of fields for you, based on the model.

		It will automatically generate validators for the serializer, such as unique_together validators.

		It includes simple default implementations of .create() and .update().

Declaring a ModelSerializer looks like this:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = ('id', 'account_name', 'users', 'created')

By default, all the model fields on the class will be mapped to a corresponding serializer fields.

Any relationships such as foreign keys on the model will be mapped to PrimaryKeyRelatedField. Reverse relationships are not included by default unless explicitly included as described below.

Inspecting a ModelSerializer

Serializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with ModelSerializers where you want to determine what set of fields and validators are being automatically created for you.

To do so, open the Django shell, using python manage.py shell, then import the serializer class, instantiate it, and print the object representation…

>>> from myapp.serializers import AccountSerializer
>>> serializer = AccountSerializer()
>>> print repr(serializer) # Or `print(repr(serializer))` in Python 3.x.
AccountSerializer():
 id = IntegerField(label='ID', read_only=True)
 name = CharField(allow_blank=True, max_length=100, required=False)
 owner = PrimaryKeyRelatedField(queryset=User.objects.all())

Specifying which fields to include

If you only want a subset of the default fields to be used in a model serializer, you can do so using fields or exclude options, just as you would with a ModelForm. It is strongly recommended that you explicitly set all fields that should be serialized using the fields attribute. This will make it less likely to result in unintentionally exposing data when your models change.

For example:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = ('id', 'account_name', 'users', 'created')

You can also set the fields attribute to the special value '__all__' to indicate that all fields in the model should be used.

For example:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = '__all__'

You can set the exclude attribute to a list of fields to be excluded from the serializer.

For example:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 exclude = ('users',)

In the example above, if the Account model had 3 fields account_name, users, and created, this will result in the fields account_name and created to be serialized.

The names in the fields and exclude attributes will normally map to model fields on the model class.

Alternatively names in the fields options can map to properties or methods which take no arguments that exist on the model class.

Specifying nested serialization

The default ModelSerializer uses primary keys for relationships, but you can also easily generate nested representations using the depth option:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = ('id', 'account_name', 'users', 'created')
 depth = 1

The depth option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.

If you want to customize the way the serialization is done you’ll need to define the field yourself.

Specifying fields explicitly

You can add extra fields to a ModelSerializer or override the default fields by declaring fields on the class, just as you would for a Serializer class.

class AccountSerializer(serializers.ModelSerializer):
 url = serializers.CharField(source='get_absolute_url', read_only=True)
 groups = serializers.PrimaryKeyRelatedField(many=True)

 class Meta:
 model = Account

Extra fields can correspond to any property or callable on the model.

Specifying read only fields

You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the read_only=True attribute, you may use the shortcut Meta option, read_only_fields.

This option should be a list or tuple of field names, and is declared as follows:

class AccountSerializer(serializers.ModelSerializer):
 class Meta:
 model = Account
 fields = ('id', 'account_name', 'users', 'created')
 read_only_fields = ('account_name',)

Model fields which have editable=False set, and AutoField fields will be set to read-only by default, and do not need to be added to the read_only_fields option.

Note: There is a special-case where a read-only field is part of a unique_together constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.

The right way to deal with this is to specify the field explicitly on the serializer, providing both the read_only=True and default=… keyword arguments.

One example of this is a read-only relation to the currently authenticated User which is unique_together with another identifier. In this case you would declare the user field like so:

user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())

Please review the Validators Documentation for details on the UniqueTogetherValidator and CurrentUserDefault classes.

Additional keyword arguments

There is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the extra_kwargs option. As in the case of read_only_fields, this means you do not need to explicitly declare the field on the serializer.

This option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:

class CreateUserSerializer(serializers.ModelSerializer):
 class Meta:
 model = User
 fields = ('email', 'username', 'password')
 extra_kwargs = {'password': {'write_only': True}}

 def create(self, validated_data):
 user = User(
 email=validated_data['email'],
 username=validated_data['username']
)
 user.set_password(validated_data['password'])
 user.save()
 return user

Relational fields

When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for ModelSerializer is to use the primary keys of the related instances.

Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.

For full details see the serializer relations documentation.

Inheritance of the ‘Meta’ class

The inner Meta class on serializers is not inherited from parent classes by default. This is the same behavior as with Django’s Model and ModelForm classes. If you want the Meta class to inherit from a parent class you must do so explicitly. For example:

class AccountSerializer(MyBaseSerializer):
 class Meta(MyBaseSerializer.Meta):
 model = Account

Typically we would recommend not using inheritance on inner Meta classes, but instead declaring all options explicitly.

Customizing field mappings

The ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.

Normally if a ModelSerializer does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular Serializer class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.

.serializer_field_mapping

A mapping of Django model classes to REST framework serializer classes. You can override this mapping to alter the default serializer classes that should be used for each model class.

.serializer_related_field

This property should be the serializer field class, that is used for relational fields by default.

For ModelSerializer this defaults to PrimaryKeyRelatedField.

For HyperlinkedModelSerializer this defaults to serializers.HyperlinkedRelatedField.

serializer_url_field

The serializer field class that should be used for any url field on the serializer.

Defaults to serializers.HyperlinkedIdentityField

serializer_choice_field

The serializer field class that should be used for any choice fields on the serializer.

Defaults to serializers.ChoiceField

The field_class and field_kwargs API

The following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of (field_class, field_kwargs).

.build_standard_field(self, field_name, model_field)

Called to generate a serializer field that maps to a standard model field.

The default implementation returns a serializer class based on the serializer_field_mapping attribute.

.build_relational_field(self, field_name, relation_info)

Called to generate a serializer field that maps to a relational model field.

The default implementation returns a serializer class based on the serializer_relational_field attribute.

The relation_info argument is a named tuple, that contains model_field, related_model, to_many and has_through_model properties.

.build_nested_field(self, field_name, relation_info, nested_depth)

Called to generate a serializer field that maps to a relational model field, when the depth option has been set.

The default implementation dynamically creates a nested serializer class based on either ModelSerializer or HyperlinkedModelSerializer.

The nested_depth will be the value of the depth option, minus one.

The relation_info argument is a named tuple, that contains model_field, related_model, to_many and has_through_model properties.

.build_property_field(self, field_name, model_class)

Called to generate a serializer field that maps to a property or zero-argument method on the model class.

The default implementation returns a ReadOnlyField class.

.build_url_field(self, field_name, model_class)

Called to generate a serializer field for the serializer’s own url field. The default implementation returns a HyperlinkedIdentityField class.

.build_unknown_field(self, field_name, model_class)

Called when the field name did not map to any model field or model property.
The default implementation raises an error, although subclasses may customize this behavior.

HyperlinkedModelSerializer

The HyperlinkedModelSerializer class is similar to the ModelSerializer class except that it uses hyperlinks to represent relationships, rather than primary keys.

By default the serializer will include a url field instead of a primary key field.

The url field will be represented using a HyperlinkedIdentityField serializer field, and any relationships on the model will be represented using a HyperlinkedRelatedField serializer field.

You can explicitly include the primary key by adding it to the fields option, for example:

class AccountSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Account
 fields = ('url', 'id', 'account_name', 'users', 'created')

How hyperlinked views are determined

There needs to be a way of determining which views should be used for hyperlinking to model instances.

By default hyperlinks are expected to correspond to a view name that matches the style '{model_name}-detail', and looks up the instance by a pk keyword argument.

You can override a URL field view name and lookup field by using either, or both of, the view_name and lookup_field options in the extra_kwargs setting, like so:

class AccountSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Account
 fields = ('account_url', 'account_name', 'users', 'created')
 extra_kwargs = {
 'url': {'view_name': 'accounts', 'lookup_field': 'account_name'}
 'users': {'lookup_field': 'username'}
 }

Alternatively you can set the fields on the serializer explicitly. For example:

class AccountSerializer(serializers.HyperlinkedModelSerializer):
 url = serializers.HyperlinkedIdentityField(
 view_name='accounts',
 lookup_field='slug'
)
 users = serializers.HyperlinkedRelatedField(
 view_name='user-detail',
 lookup_field='username',
 many=True,
 read_only=True
)

 class Meta:
 model = Account
 fields = ('url', 'account_name', 'users', 'created')

Tip: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the repr of a HyperlinkedModelSerializer instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.

Changing the URL field name

The name of the URL field defaults to ‘url’. You can override this globally, by using the URL_FIELD_NAME setting.

ListSerializer

The ListSerializer class provides the behavior for serializing and validating multiple objects at once. You won’t typically need to use ListSerializer directly, but should instead simply pass many=True when instantiating a serializer.

When a serializer is instantiated and many=True is passed, a ListSerializer instance will be created. The serializer class then becomes a child of the parent ListSerializer

There are a few use cases when you might want to customize the ListSerializer behavior. For example:

		You want to provide particular validation of the lists, such as always ensuring that there is at least one element in a list.

		You want to customize the create or update behavior of multiple objects.

For these cases you can modify the class that is used when many=True is passed, by using the list_serializer_class option on the serializer Meta class.

For example:

class CustomListSerializer(serializers.ListSerializer):
 ...

class CustomSerializer(serializers.Serializer):
 ...
 class Meta:
 list_serializer_class = CustomListSerializer

Customizing multiple create

The default implementation for multiple object creation is to simply call .create() for each item in the list. If you want to customize this behavior, you’ll need to customize the .create() method on ListSerializer class that is used when many=True is passed.

For example:

class BookListSerializer(serializers.ListSerializer):
 def create(self, validated_data):
 books = [Book(**item) for item in validated_data]
 return Book.objects.bulk_create(books)

class BookSerializer(serializers.Serializer):
 ...
 class Meta:
 list_serializer_class = BookListSerializer

Customizing multiple update

By default the ListSerializer class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.

To support multiple updates you’ll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:

		How do you determine which instance should be updated for each item in the list of data?

		How should insertions be handled? Are they invalid, or do they create new objects?

		How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?

		How should ordering be handled? Does changing the position of two items imply any state change or is it ignored?

Here’s an example of how you might choose to implement multiple updates:

class BookListSerializer(serializers.ListSerializer):
 def update(self, instance, validated_data):
 # Maps for id->instance and id->data item.
 book_mapping = {book.id: book for book in instance}
 data_mapping = {item['id']: item for item in validated_data}

 # Perform creations and updates.
 ret = []
 for book_id, data in data_mapping.items():
 book = book_mapping.get(book_id, None):
 if book is None:
 ret.append(self.child.create(data))
 else:
 ret.append(self.child.update(book, data))

 # Perform deletions.
 for book_id, book in book_mapping.items():
 if book_id not in data_mapping:
 book.delete()

 return ret

class BookSerializer(serializers.Serializer):
 ...
 class Meta:
 list_serializer_class = BookListSerializer

It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove behavior that was present in REST framework 2.

Customizing ListSerializer initialization

When a serializer with many=True is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__() method for both the child Serializer class, and for the parent ListSerializer class.

The default implementation is to pass all arguments to both classes, except for validators, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.

Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True is passed. You can do so by using the many_init class method.

 @classmethod
 def many_init(cls, *args, **kwargs):
 # Instantiate the child serializer.
 kwargs['child'] = cls()
 # Instantiate the parent list serializer.
 return CustomListSerializer(*args, **kwargs)

BaseSerializer

BaseSerializer class that can be used to easily support alternative serialization and deserialization styles.

This class implements the same basic API as the Serializer class:

		.data - Returns the outgoing primitive representation.

		.is_valid() - Deserializes and validates incoming data.

		.validated_data - Returns the validated incoming data.

		.errors - Returns any errors during validation.

		.save() - Persists the validated data into an object instance.

There are four methods that can be overridden, depending on what functionality you want the serializer class to support:

		.to_representation() - Override this to support serialization, for read operations.

		.to_internal_value() - Override this to support deserialization, for write operations.

		.create() and .update() - Override either or both of these to support saving instances.

Because this class provides the same interface as the Serializer class, you can use it with the existing generic class based views exactly as you would for a regular Serializer or ModelSerializer.

The only difference you’ll notice when doing so is the BaseSerializer classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.

Read-only BaseSerializer classes

To implement a read-only serializer using the BaseSerializer class, we just need to override the .to_representation() method. Let’s take a look at an example using a simple Django model:

class HighScore(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 player_name = models.CharField(max_length=10)
 score = models.IntegerField()

It’s simple to create a read-only serializer for converting HighScore instances into primitive data types.

class HighScoreSerializer(serializers.BaseSerializer):
 def to_representation(self, obj):
 return {
 'score': obj.score,
 'player_name': obj.player_name
 }

We can now use this class to serialize single HighScore instances:

@api_view(['GET'])
def high_score(request, pk):
 instance = HighScore.objects.get(pk=pk)
 serializer = HighScoreSerializer(instance)
 return Response(serializer.data)

Or use it to serialize multiple instances:

@api_view(['GET'])
def all_high_scores(request):
 queryset = HighScore.objects.order_by('-score')
 serializer = HighScoreSerializer(queryset, many=True)
 return Response(serializer.data)

Read-write BaseSerializer classes

To create a read-write serializer we first need to implement a .to_internal_value() method. This method returns the validated values that will be used to construct the object instance, and may raise a ValidationError if the supplied data is in an incorrect format.

Once you’ve implemented .to_internal_value(), the basic validation API will be available on the serializer, and you will be able to use .is_valid(), .validated_data and .errors.

If you want to also support .save() you’ll need to also implement either or both of the .create() and .update() methods.

Here’s a complete example of our previous HighScoreSerializer, that’s been updated to support both read and write operations.

class HighScoreSerializer(serializers.BaseSerializer):
 def to_internal_value(self, data):
 score = data.get('score')
 player_name = data.get('player_name')

 # Perform the data validation.
 if not score:
 raise ValidationError({
 'score': 'This field is required.'
 })
 if not player_name:
 raise ValidationError({
 'player_name': 'This field is required.'
 })
 if len(player_name) > 10:
 raise ValidationError({
 'player_name': 'May not be more than 10 characters.'
 })

 # Return the validated values. This will be available as
 # the `.validated_data` property.
 return {
 'score': int(score),
 'player_name': player_name
 }

 def to_representation(self, obj):
 return {
 'score': obj.score,
 'player_name': obj.player_name
 }

 def create(self, validated_data):
 return HighScore.objects.create(**validated_data)

Creating new base classes

The BaseSerializer class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.

The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.

class ObjectSerializer(serializers.BaseSerializer):
 """
 A read-only serializer that coerces arbitrary complex objects
 into primitive representations.
 """
 def to_representation(self, obj):
 for attribute_name in dir(obj):
 attribute = getattr(obj, attribute_name)
 if attribute_name('_'):
 # Ignore private attributes.
 pass
 elif hasattr(attribute, '__call__'):
 # Ignore methods and other callables.
 pass
 elif isinstance(attribute, (str, int, bool, float, type(None))):
 # Primitive types can be passed through unmodified.
 output[attribute_name] = attribute
 elif isinstance(attribute, list):
 # Recursively deal with items in lists.
 output[attribute_name] = [
 self.to_representation(item) for item in attribute
]
 elif isinstance(attribute, dict):
 # Recursively deal with items in dictionaries.
 output[attribute_name] = {
 str(key): self.to_representation(value)
 for key, value in attribute.items()
 }
 else:
 # Force anything else to its string representation.
 output[attribute_name] = str(attribute)

Advanced serializer usage

Overriding serialization and deserialization behavior

If you need to alter the serialization, deserialization or validation of a serializer class you can do so by overriding the .to_representation() or .to_internal_value() methods.

Some reasons this might be useful include...

		Adding new behavior for new serializer base classes.

		Modifying the behavior slightly for an existing class.

		Improving serialization performance for a frequently accessed API endpoint that returns lots of data.

The signatures for these methods are as follows:

.to_representation(self, obj)

Takes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.

.to_internal_value(self, data)

Takes the unvalidated incoming data as input and should return the validated data that will be made available as serializer.validated_data. The return value will also be passed to the .create() or .update() methods if .save() is called on the serializer class.

If any of the validation fails, then the method should raise a serializers.ValidationError(errors). Typically the errors argument here will be a dictionary mapping field names to error messages.

The data argument passed to this method will normally be the value of request.data, so the datatype it provides will depend on the parser classes you have configured for your API.

Dynamically modifying fields

Once a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the .fields attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.

Modifying the fields argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.

Example

For example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:

class DynamicFieldsModelSerializer(serializers.ModelSerializer):
 """
 A ModelSerializer that takes an additional `fields` argument that
 controls which fields should be displayed.
 """

 def __init__(self, *args, **kwargs):
 # Don't pass the 'fields' arg up to the superclass
 fields = kwargs.pop('fields', None)

 # Instantiate the superclass normally
 super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs)

 if fields is not None:
 # Drop any fields that are not specified in the `fields` argument.
 allowed = set(fields)
 existing = set(self.fields.keys())
 for field_name in existing - allowed:
 self.fields.pop(field_name)

This would then allow you to do the following:

>>> class UserSerializer(DynamicFieldsModelSerializer):
>>> class Meta:
>>> model = User
>>> fields = ('id', 'username', 'email')
>>>
>>> print UserSerializer(user)
{'id': 2, 'username': 'jonwatts', 'email': 'jon@example.com'}
>>>
>>> print UserSerializer(user, fields=('id', 'email'))
{'id': 2, 'email': 'jon@example.com'}

Customizing the default fields

REST framework 2 provided an API to allow developers to override how a ModelSerializer class would automatically generate the default set of fields.

This API included the .get_field(), .get_pk_field() and other methods.

Because the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you’ll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.

A new interface for controlling this behavior is currently planned for REST framework 3.1.

Third party packages

The following third party packages are also available.

Django REST marshmallow

The django-rest-marshmallow [http://tomchristie.github.io/django-rest-marshmallow/] package provides an alternative implementation for serializers, using the python marshmallow [https://marshmallow.readthedocs.org/en/latest/] library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.

Serpy

The serpy [https://github.com/clarkduvall/serpy] package is an alternative implementation for serializers that is built for speed. Serpy [https://github.com/clarkduvall/serpy] serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.

MongoengineModelSerializer

The django-rest-framework-mongoengine [https://github.com/umutbozkurt/django-rest-framework-mongoengine] package provides a MongoEngineModelSerializer serializer class that supports using MongoDB as the storage layer for Django REST framework.

GeoFeatureModelSerializer

The django-rest-framework-gis [https://github.com/djangonauts/django-rest-framework-gis] package provides a GeoFeatureModelSerializer serializer class that supports GeoJSON both for read and write operations.

HStoreSerializer

The django-rest-framework-hstore [https://github.com/djangonauts/django-rest-framework-hstore] package provides an HStoreSerializer to support django-hstore [https://github.com/djangonauts/django-hstore] DictionaryField model field and its schema-mode feature.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/relations.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: relations.py

Serializer relations

Bad programmers worry about the code.
Good programmers worry about data structures and their relationships.

—

 Linus Torvalds [http://lwn.net/Articles/193245/]

Relational fields are used to represent model relationships. They can be applied to ForeignKey, ManyToManyField and OneToOneField relationships, as well as to reverse relationships, and custom relationships such as GenericForeignKey.

Note: The relational fields are declared in relations.py, but by convention you should import them from the serializers module, using from rest_framework import serializers and refer to fields as serializers.<FieldName>.

Inspecting relationships.

When using the ModelSerializer class, serializer fields and relationships will be automatically generated for you. Inspecting these automatically generated fields can be a useful tool for determining how to customize the relationship style.

To do so, open the Django shell, using python manage.py shell, then import the serializer class, instantiate it, and print the object representation…

>>> from myapp.serializers import AccountSerializer
>>> serializer = AccountSerializer()
>>> print repr(serializer) # Or `print(repr(serializer))` in Python 3.x.
AccountSerializer():
 id = IntegerField(label='ID', read_only=True)
 name = CharField(allow_blank=True, max_length=100, required=False)
 owner = PrimaryKeyRelatedField(queryset=User.objects.all())

API Reference

In order to explain the various types of relational fields, we’ll use a couple of simple models for our examples. Our models will be for music albums, and the tracks listed on each album.

class Album(models.Model):
 album_name = models.CharField(max_length=100)
 artist = models.CharField(max_length=100)

class Track(models.Model):
 album = models.ForeignKey(Album, related_name='tracks')
 order = models.IntegerField()
 title = models.CharField(max_length=100)
 duration = models.IntegerField()

 class Meta:
 unique_together = ('album', 'order')
 ordering = ['order']

 def __unicode__(self):
 return '%d: %s' % (self.order, self.title)

StringRelatedField

StringRelatedField may be used to represent the target of the relationship using its __unicode__ method.

For example, the following serializer.

class AlbumSerializer(serializers.ModelSerializer):
 tracks = serializers.StringRelatedField(many=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Would serialize to the following representation.

{
 'album_name': 'Things We Lost In The Fire',
 'artist': 'Low',
 'tracks': [
 '1: Sunflower',
 '2: Whitetail',
 '3: Dinosaur Act',
 ...
]
}

This field is read only.

Arguments:

		many - If applied to a to-many relationship, you should set this argument to True.

PrimaryKeyRelatedField

PrimaryKeyRelatedField may be used to represent the target of the relationship using its primary key.

For example, the following serializer:

class AlbumSerializer(serializers.ModelSerializer):
 tracks = serializers.PrimaryKeyRelatedField(many=True, read_only=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Would serialize to a representation like this:

{
 'album_name': 'The Roots',
 'artist': 'Undun',
 'tracks': [
 89,
 90,
 91,
 ...
]
}

By default this field is read-write, although you can change this behavior using the read_only flag.

Arguments:

		queryset - The queryset used for model instance lookups when validating the field input. Relationships must either set a queryset explicitly, or set read_only=True.

		many - If applied to a to-many relationship, you should set this argument to True.

		allow_null - If set to True, the field will accept values of None or the empty string for nullable relationships. Defaults to False.

		pk_field - Set to a field to control serialization/deserialization of the primary key’s value. For example, pk_field=UUIDField(format='hex') would serialize a UUID primary key into its compact hex representation.

HyperlinkedRelatedField

HyperlinkedRelatedField may be used to represent the target of the relationship using a hyperlink.

For example, the following serializer:

class AlbumSerializer(serializers.ModelSerializer):
 tracks = serializers.HyperlinkedRelatedField(
 many=True,
 read_only=True,
 view_name='track-detail'
)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Would serialize to a representation like this:

{
 'album_name': 'Graceland',
 'artist': 'Paul Simon',
 'tracks': [
 'http://www.example.com/api/tracks/45/',
 'http://www.example.com/api/tracks/46/',
 'http://www.example.com/api/tracks/47/',
 ...
]
}

By default this field is read-write, although you can change this behavior using the read_only flag.

Note: This field is designed for objects that map to a URL that accepts a single URL keyword argument, as set using the lookup_field and lookup_url_kwarg arguments.

This is suitable for URLs that contain a single primary key or slug argument as part of the URL.

If you require more complex hyperlinked representation you’ll need to customize the field, as described in the custom hyperlinked fields section, below.

Arguments:

		view_name - The view name that should be used as the target of the relationship. If you’re using the standard router classes [http://www.django-rest-framework.org/api-guide/routers#defaultrouter] this will be a string with the format <modelname>-detail. required.

		queryset - The queryset used for model instance lookups when validating the field input. Relationships must either set a queryset explicitly, or set read_only=True.

		many - If applied to a to-many relationship, you should set this argument to True.

		allow_null - If set to True, the field will accept values of None or the empty string for nullable relationships. Defaults to False.

		lookup_field - The field on the target that should be used for the lookup. Should correspond to a URL keyword argument on the referenced view. Default is 'pk'.

		lookup_url_kwarg - The name of the keyword argument defined in the URL conf that corresponds to the lookup field. Defaults to using the same value as lookup_field.

		format - If using format suffixes, hyperlinked fields will use the same format suffix for the target unless overridden by using the format argument.

SlugRelatedField

SlugRelatedField may be used to represent the target of the relationship using a field on the target.

For example, the following serializer:

class AlbumSerializer(serializers.ModelSerializer):
 tracks = serializers.SlugRelatedField(
 many=True,
 read_only=True,
 slug_field='title'
)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Would serialize to a representation like this:

{
 'album_name': 'Dear John',
 'artist': 'Loney Dear',
 'tracks': [
 'Airport Surroundings',
 'Everything Turns to You',
 'I Was Only Going Out',
 ...
]
}

By default this field is read-write, although you can change this behavior using the read_only flag.

When using SlugRelatedField as a read-write field, you will normally want to ensure that the slug field corresponds to a model field with unique=True.

Arguments:

		slug_field - The field on the target that should be used to represent it. This should be a field that uniquely identifies any given instance. For example, username. required

		queryset - The queryset used for model instance lookups when validating the field input. Relationships must either set a queryset explicitly, or set read_only=True.

		many - If applied to a to-many relationship, you should set this argument to True.

		allow_null - If set to True, the field will accept values of None or the empty string for nullable relationships. Defaults to False.

HyperlinkedIdentityField

This field can be applied as an identity relationship, such as the 'url' field on a HyperlinkedModelSerializer. It can also be used for an attribute on the object. For example, the following serializer:

class AlbumSerializer(serializers.HyperlinkedModelSerializer):
 track_listing = serializers.HyperlinkedIdentityField(view_name='track-list')

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'track_listing')

Would serialize to a representation like this:

{
 'album_name': 'The Eraser',
 'artist': 'Thom Yorke',
 'track_listing': 'http://www.example.com/api/track_list/12/',
}

This field is always read-only.

Arguments:

		view_name - The view name that should be used as the target of the relationship. If you’re using the standard router classes [http://www.django-rest-framework.org/api-guide/routers#defaultrouter] this will be a string with the format <model_name>-detail. required.

		lookup_field - The field on the target that should be used for the lookup. Should correspond to a URL keyword argument on the referenced view. Default is 'pk'.

		lookup_url_kwarg - The name of the keyword argument defined in the URL conf that corresponds to the lookup field. Defaults to using the same value as lookup_field.

		format - If using format suffixes, hyperlinked fields will use the same format suffix for the target unless overridden by using the format argument.

Nested relationships

Nested relationships can be expressed by using serializers as fields.

If the field is used to represent a to-many relationship, you should add the many=True flag to the serializer field.

Example

For example, the following serializer:

class TrackSerializer(serializers.ModelSerializer):
 class Meta:
 model = Track
 fields = ('order', 'title', 'duration')

class AlbumSerializer(serializers.ModelSerializer):
 tracks = TrackSerializer(many=True, read_only=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

Would serialize to a nested representation like this:

>>> album = Album.objects.create(album_name="The Grey Album", artist='Danger Mouse')
>>> Track.objects.create(album=album, order=1, title='Public Service Announcement', duration=245)
<Track: Track object>
>>> Track.objects.create(album=album, order=2, title='What More Can I Say', duration=264)
<Track: Track object>
>>> Track.objects.create(album=album, order=3, title='Encore', duration=159)
<Track: Track object>
>>> serializer = AlbumSerializer(instance=album)
>>> serializer.data
{
 'album_name': 'The Grey Album',
 'artist': 'Danger Mouse',
 'tracks': [
 {'order': 1, 'title': 'Public Service Announcement', 'duration': 245},
 {'order': 2, 'title': 'What More Can I Say', 'duration': 264},
 {'order': 3, 'title': 'Encore', 'duration': 159},
 ...
],
}

Writable nested serializers

By default nested serializers are read-only. If you want to support write-operations to a nested serializer field you’ll need to create create() and/or update() methods in order to explicitly specify how the child relationships should be saved.

class TrackSerializer(serializers.ModelSerializer):
 class Meta:
 model = Track
 fields = ('order', 'title', 'duration')

class AlbumSerializer(serializers.ModelSerializer):
 tracks = TrackSerializer(many=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

 def create(self, validated_data):
 tracks_data = validated_data.pop('tracks')
 album = Album.objects.create(**validated_data)
 for track_data in tracks_data:
 Track.objects.create(album=album, **track_data)
 return album

>>> data = {
 'album_name': 'The Grey Album',
 'artist': 'Danger Mouse',
 'tracks': [
 {'order': 1, 'title': 'Public Service Announcement', 'duration': 245},
 {'order': 2, 'title': 'What More Can I Say', 'duration': 264},
 {'order': 3, 'title': 'Encore', 'duration': 159},
],
}
>>> serializer = AlbumSerializer(data=data)
>>> serializer.is_valid()
True
>>> serializer.save()
<Album: Album object>

Custom relational fields

To implement a custom relational field, you should override RelatedField, and implement the .to_representation(self, value) method. This method takes the target of the field as the value argument, and should return the representation that should be used to serialize the target. The value argument will typically be a model instance.

If you want to implement a read-write relational field, you must also implement the .to_internal_value(self, data) method.

Example

For example, we could define a relational field to serialize a track to a custom string representation, using its ordering, title, and duration.

import time

class TrackListingField(serializers.RelatedField):
 def to_representation(self, value):
 duration = time.strftime('%M:%S', time.gmtime(value.duration))
 return 'Track %d: %s (%s)' % (value.order, value.name, duration)

class AlbumSerializer(serializers.ModelSerializer):
 tracks = TrackListingField(many=True)

 class Meta:
 model = Album
 fields = ('album_name', 'artist', 'tracks')

This custom field would then serialize to the following representation.

{
 'album_name': 'Sometimes I Wish We Were an Eagle',
 'artist': 'Bill Callahan',
 'tracks': [
 'Track 1: Jim Cain (04:39)',
 'Track 2: Eid Ma Clack Shaw (04:19)',
 'Track 3: The Wind and the Dove (04:34)',
 ...
]
}

Custom hyperlinked fields

In some cases you may need to customize the behavior of a hyperlinked field, in order to represent URLs that require more than a single lookup field.

You can achieve this by overriding HyperlinkedRelatedField. There are two methods that may be overridden:

get_url(self, obj, view_name, request, format)

The get_url method is used to map the object instance to its URL representation.

May raise a NoReverseMatch if the view_name and lookup_field
attributes are not configured to correctly match the URL conf.

get_object(self, queryset, view_name, view_args, view_kwargs)

If you want to support a writable hyperlinked field then you’ll also want to override get_object, in order to map incoming URLs back to the object they represent. For read-only hyperlinked fields there is no need to override this method.

The return value of this method should the object that corresponds to the matched URL conf arguments.

May raise an ObjectDoesNotExist exception.

Example

Say we have a URL for a customer object that takes two keyword arguments, like so:

/api/<organization_slug>/customers/<customer_pk>/

This cannot be represented with the default implementation, which accepts only a single lookup field.

In this case we’d need to override HyperlinkedRelatedField to get the behavior we want:

from rest_framework import serializers
from rest_framework.reverse import reverse

class CustomerHyperlink(serializers.HyperlinkedRelatedField):
 # We define these as class attributes, so we don't need to pass them as arguments.
 view_name = 'customer-detail'
 queryset = Customer.objects.all()

 def get_url(self, obj, view_name, request, format):
 url_kwargs = {
 'organization_slug': obj.organization.slug,
 'customer_pk': obj.pk
 }
 return reverse(view_name, url_kwargs, request=request, format=format)

 def get_object(self, view_name, view_args, view_kwargs):
 lookup_kwargs = {
 'organization__slug': view_kwargs['organization_slug'],
 'pk': view_kwargs['customer_pk']
 }
 return self.get_queryset().get(**lookup_kwargs)

Note that if you wanted to use this style together with the generic views then you’d also need to override .get_object on the view in order to get the correct lookup behavior.

Generally we recommend a flat style for API representations where possible, but the nested URL style can also be reasonable when used in moderation.

Further notes

The queryset argument

The queryset argument is only ever required for writable relationship field, in which case it is used for performing the model instance lookup, that maps from the primitive user input, into a model instance.

In version 2.x a serializer class could sometimes automatically determine the queryset argument if a ModelSerializer class was being used.

This behavior is now replaced with always using an explicit queryset argument for writable relational fields.

Doing so reduces the amount of hidden ‘magic’ that ModelSerializer provides, makes the behavior of the field more clear, and ensures that it is trivial to move between using the ModelSerializer shortcut, or using fully explicit Serializer classes.

Customizing the HTML display

The built-in __str__ method of the model will be used to generate string representations of the objects used to populate the choices property. These choices are used to populate select HTML inputs in the browsable API.

To provide customized representations for such inputs, override display_value() of a RelatedField subclass. This method will receive a model object, and should return a string suitable for representing it. For example:

class TrackPrimaryKeyRelatedField(serializers.PrimaryKeyRelatedField):
 def display_value(self, instance):
 return 'Track: %s' % (instance.title)

Select field cutoffs

When rendered in the browsable API relational fields will default to only displaying a maximum of 1000 selectable items. If more items are present then a disabled option with “More than 1000 items…” will be displayed.

This behavior is intended to prevent a template from being unable to render in an acceptable timespan due to a very large number of relationships being displayed.

There are two keyword arguments you can use to control this behavior:

		html_cutoff - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Set to None to disable any limiting. Defaults to 1000.

		html_cutoff_text - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to "More than {count} items…"

In cases where the cutoff is being enforced you may want to instead use a plain input field in the HTML form. You can do so using the style keyword argument. For example:

assigned_to = serializers.SlugRelatedField(
 queryset=User.objects.all(),
 slug field='username',
 style={'base_template': 'input.html'}
)

Reverse relations

Note that reverse relationships are not automatically included by the ModelSerializer and HyperlinkedModelSerializer classes. To include a reverse relationship, you must explicitly add it to the fields list. For example:

class AlbumSerializer(serializers.ModelSerializer):
 class Meta:
 fields = ('tracks', ...)

You’ll normally want to ensure that you’ve set an appropriate related_name argument on the relationship, that you can use as the field name. For example:

class Track(models.Model):
 album = models.ForeignKey(Album, related_name='tracks')
 ...

If you have not set a related name for the reverse relationship, you’ll need to use the automatically generated related name in the fields argument. For example:

class AlbumSerializer(serializers.ModelSerializer):
 class Meta:
 fields = ('track_set', ...)

See the Django documentation on reverse relationships [https://docs.djangoproject.com/en/dev/topics/db/queries/#following-relationships-backward] for more details.

Generic relationships

If you want to serialize a generic foreign key, you need to define a custom field, to determine explicitly how you want serialize the targets of the relationship.

For example, given the following model for a tag, which has a generic relationship with other arbitrary models:

class TaggedItem(models.Model):
 """
 Tags arbitrary model instances using a generic relation.

 See: https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/
 """
 tag_name = models.SlugField()
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 tagged_object = GenericForeignKey('content_type', 'object_id')

 def __unicode__(self):
 return self.tag_name

And the following two models, which may be have associated tags:

class Bookmark(models.Model):
 """
 A bookmark consists of a URL, and 0 or more descriptive tags.
 """
 url = models.URLField()
 tags = GenericRelation(TaggedItem)

class Note(models.Model):
 """
 A note consists of some text, and 0 or more descriptive tags.
 """
 text = models.CharField(max_length=1000)
 tags = GenericRelation(TaggedItem)

We could define a custom field that could be used to serialize tagged instances, using the type of each instance to determine how it should be serialized.

class TaggedObjectRelatedField(serializers.RelatedField):
 """
 A custom field to use for the `tagged_object` generic relationship.
 """

 def to_representation(self, value):
 """
 Serialize tagged objects to a simple textual representation.
 """
 if isinstance(value, Bookmark):
 return 'Bookmark: ' + value.url
 elif isinstance(value, Note):
 return 'Note: ' + value.text
 raise Exception('Unexpected type of tagged object')

If you need the target of the relationship to have a nested representation, you can use the required serializers inside the .to_representation() method:

 def to_representation(self, value):
 """
 Serialize bookmark instances using a bookmark serializer,
 and note instances using a note serializer.
 """
 if isinstance(value, Bookmark):
 serializer = BookmarkSerializer(value)
 elif isinstance(value, Note):
 serializer = NoteSerializer(value)
 else:
 raise Exception('Unexpected type of tagged object')

 return serializer.data

Note that reverse generic keys, expressed using the GenericRelation field, can be serialized using the regular relational field types, since the type of the target in the relationship is always known.

For more information see the Django documentation on generic relations [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#id1].

ManyToManyFields with a Through Model

By default, relational fields that target a ManyToManyField with a
through model specified are set to read-only.

If you explicitly specify a relational field pointing to a
ManyToManyField with a through model, be sure to set read_only
to True.

Third Party Packages

The following third party packages are also available.

DRF Nested Routers

The drf-nested-routers package [https://github.com/alanjds/drf-nested-routers] provides routers and relationship fields for working with nested resources.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/exceptions.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: exceptions.py

Exceptions

Exceptions… allow error handling to be organized cleanly in a central or high-level place within the program structure.

—

 Doug Hellmann, Python Exception Handling Techniques [http://www.doughellmann.com/articles/how-tos/python-exception-handling/index.html]

Exception handling in REST framework views

REST framework’s views handle various exceptions, and deal with returning appropriate error responses.

The handled exceptions are:

		Subclasses of APIException raised inside REST framework.

		Django’s Http404 exception.

		Django’s PermissionDenied exception.

In each case, REST framework will return a response with an appropriate status code and content-type. The body of the response will include any additional details regarding the nature of the error.

Most error responses will include a key detail in the body of the response.

For example, the following request:

DELETE http://api.example.com/foo/bar HTTP/1.1
Accept: application/json

Might receive an error response indicating that the DELETE method is not allowed on that resource:

HTTP/1.1 405 Method Not Allowed
Content-Type: application/json
Content-Length: 42

{"detail": "Method 'DELETE' not allowed."}

Validation errors are handled slightly differently, and will include the field names as the keys in the response. If the validation error was not specific to a particular field then it will use the “non_field_errors” key, or whatever string value has been set for the NON_FIELD_ERRORS_KEY setting.

Any example validation error might look like this:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 94

{"amount": ["A valid integer is required."], "description": ["This field may not be blank."]}

Custom exception handling

You can implement custom exception handling by creating a handler function that converts exceptions raised in your API views into response objects. This allows you to control the style of error responses used by your API.

The function must take a pair of arguments, this first is the exception to be handled, and the second is a dictionary containing any extra context such as the view currently being handled. The exception handler function should either return a Response object, or return None if the exception cannot be handled. If the handler returns None then the exception will be re-raised and Django will return a standard HTTP 500 ‘server error’ response.

For example, you might want to ensure that all error responses include the HTTP status code in the body of the response, like so:

HTTP/1.1 405 Method Not Allowed
Content-Type: application/json
Content-Length: 62

{"status_code": 405, "detail": "Method 'DELETE' not allowed."}

In order to alter the style of the response, you could write the following custom exception handler:

from rest_framework.views import exception_handler

def custom_exception_handler(exc, context):
 # Call REST framework's default exception handler first,
 # to get the standard error response.
 response = exception_handler(exc, context)

 # Now add the HTTP status code to the response.
 if response is not None:
 response.data['status_code'] = response.status_code

 return response

The context argument is not used by the default handler, but can be useful if the exception handler needs further information such as the view currently being handled, which can be accessed as context['view'].

The exception handler must also be configured in your settings, using the EXCEPTION_HANDLER setting key. For example:

REST_FRAMEWORK = {
 'EXCEPTION_HANDLER': 'my_project.my_app.utils.custom_exception_handler'
}

If not specified, the 'EXCEPTION_HANDLER' setting defaults to the standard exception handler provided by REST framework:

REST_FRAMEWORK = {
 'EXCEPTION_HANDLER': 'rest_framework.views.exception_handler'
}

Note that the exception handler will only be called for responses generated by raised exceptions. It will not be used for any responses returned directly by the view, such as the HTTP_400_BAD_REQUEST responses that are returned by the generic views when serializer validation fails.

API Reference

APIException

Signature: APIException()

The base class for all exceptions raised inside an APIView class or @api_view.

To provide a custom exception, subclass APIException and set the .status_code and .default_detail properties on the class.

For example, if your API relies on a third party service that may sometimes be unreachable, you might want to implement an exception for the “503 Service Unavailable” HTTP response code. You could do this like so:

from rest_framework.exceptions import APIException

class ServiceUnavailable(APIException):
 status_code = 503
 default_detail = 'Service temporarily unavailable, try again later.'

ParseError

Signature: ParseError(detail=None)

Raised if the request contains malformed data when accessing request.data.

By default this exception results in a response with the HTTP status code “400 Bad Request”.

AuthenticationFailed

Signature: AuthenticationFailed(detail=None)

Raised when an incoming request includes incorrect authentication.

By default this exception results in a response with the HTTP status code “401 Unauthenticated”, but it may also result in a “403 Forbidden” response, depending on the authentication scheme in use. See the authentication documentation for more details.

NotAuthenticated

Signature: NotAuthenticated(detail=None)

Raised when an unauthenticated request fails the permission checks.

By default this exception results in a response with the HTTP status code “401 Unauthenticated”, but it may also result in a “403 Forbidden” response, depending on the authentication scheme in use. See the authentication documentation for more details.

PermissionDenied

Signature: PermissionDenied(detail=None)

Raised when an authenticated request fails the permission checks.

By default this exception results in a response with the HTTP status code “403 Forbidden”.

NotFound

Signature: NotFound(detail=None)

Raised when a resource does not exists at the given URL. This exception is equivalent to the standard Http404 Django exception.

By default this exception results in a response with the HTTP status code “404 Not Found”.

MethodNotAllowed

Signature: MethodNotAllowed(method, detail=None)

Raised when an incoming request occurs that does not map to a handler method on the view.

By default this exception results in a response with the HTTP status code “405 Method Not Allowed”.

NotAcceptable

Signature: NotAcceptable(detail=None)

Raised when an incoming request occurs with an Accept header that cannot be satisfied by any of the available renderers.

By default this exception results in a response with the HTTP status code “406 Not Acceptable”.

UnsupportedMediaType

Signature: UnsupportedMediaType(media_type, detail=None)

Raised if there are no parsers that can handle the content type of the request data when accessing request.data.

By default this exception results in a response with the HTTP status code “415 Unsupported Media Type”.

Throttled

Signature: Throttled(wait=None, detail=None)

Raised when an incoming request fails the throttling checks.

By default this exception results in a response with the HTTP status code “429 Too Many Requests”.

ValidationError

Signature: ValidationError(detail)

The ValidationError exception is slightly different from the other APIException classes:

		The detail argument is mandatory, not optional.

		The detail argument may be a list or dictionary of error details, and may also be a nested data structure.

		By convention you should import the serializers module and use a fully qualified ValidationError style, in order to differentiate it from Django’s built-in validation error. For example. raise serializers.ValidationError('This field must be an integer value.')

The ValidationError class should be used for serializer and field validation, and by validator classes. It is also raised when calling serializer.is_valid with the raise_exception keyword argument:

serializer.is_valid(raise_exception=True)

The generic views use the raise_exception=True flag, which means that you can override the style of validation error responses globally in your API. To do so, use a custom exception handler, as described above.

By default this exception results in a response with the HTTP status code “400 Bad Request”.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/parsers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: parsers.py

Parsers

Machine interacting web services tend to use more
structured formats for sending data than form-encoded, since they’re
sending more complex data than simple forms

—

 Malcom Tredinnick, Django developers group [https://groups.google.com/d/topic/django-developers/dxI4qVzrBY4/discussion]

REST framework includes a number of built in Parser classes, that allow you to accept requests with various media types. There is also support for defining your own custom parsers, which gives you the flexibility to design the media types that your API accepts.

How the parser is determined

The set of valid parsers for a view is always defined as a list of classes. When request.data is accessed, REST framework will examine the Content-Type header on the incoming request, and determine which parser to use to parse the request content.

Note: When developing client applications always remember to make sure you’re setting the Content-Type header when sending data in an HTTP request.

If you don’t set the content type, most clients will default to using 'application/x-www-form-urlencoded', which may not be what you wanted.

As an example, if you are sending json encoded data using jQuery with the .ajax() method [http://api.jquery.com/jQuery.ajax/], you should make sure to include the contentType: 'application/json' setting.

Setting the parsers

The default set of parsers may be set globally, using the DEFAULT_PARSER_CLASSES setting. For example, the following settings would allow only requests with JSON content, instead of the default of JSON or form data.

REST_FRAMEWORK = {
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework.parsers.JSONParser',
)
}

You can also set the parsers used for an individual view, or viewset,
using the APIView class based views.

from rest_framework.parsers import JSONParser
from rest_framework.response import Response
from rest_framework.views import APIView

class ExampleView(APIView):
 """
 A view that can accept POST requests with JSON content.
 """
 parser_classes = (JSONParser,)

 def post(self, request, format=None):
 return Response({'received data': request.data})

Or, if you’re using the @api_view decorator with function based views.

@api_view(['POST'])
@parser_classes((JSONParser,))
def example_view(request, format=None):
 """
 A view that can accept POST requests with JSON content.
 """
 return Response({'received data': request.data})

API Reference

JSONParser

Parses JSON request content.

.media_type: application/json

FormParser

Parses HTML form content. request.data will be populated with a QueryDict of data.

You will typically want to use both FormParser and MultiPartParser together in order to fully support HTML form data.

.media_type: application/x-www-form-urlencoded

MultiPartParser

Parses multipart HTML form content, which supports file uploads. Both request.data will be populated with a QueryDict.

You will typically want to use both FormParser and MultiPartParser together in order to fully support HTML form data.

.media_type: multipart/form-data

FileUploadParser

Parses raw file upload content. The request.data property will be a dictionary with a single key 'file' containing the uploaded file.

If the view used with FileUploadParser is called with a filename URL keyword argument, then that argument will be used as the filename. If it is called without a filename URL keyword argument, then the client must set the filename in the Content-Disposition HTTP header. For example Content-Disposition: attachment; filename=upload.jpg.

.media_type: */*

Notes:

		The FileUploadParser is for usage with native clients that can upload the file as a raw data request. For web-based uploads, or for native clients with multipart upload support, you should use the MultiPartParser parser instead.

		Since this parser’s media_type matches any content type, FileUploadParser should generally be the only parser set on an API view.

		FileUploadParser respects Django’s standard FILE_UPLOAD_HANDLERS setting, and the request.upload_handlers attribute. See the Django documentation [https://docs.djangoproject.com/en/dev/topics/http/file-uploads/#upload-handlers] for more details.

Basic usage example:

class FileUploadView(views.APIView):
 parser_classes = (FileUploadParser,)

 def put(self, request, filename, format=None):
 file_obj = request.data['file']
 # ...
 # do some stuff with uploaded file
 # ...
 return Response(status=204)

Custom parsers

To implement a custom parser, you should override BaseParser, set the .media_type property, and implement the .parse(self, stream, media_type, parser_context) method.

The method should return the data that will be used to populate the request.data property.

The arguments passed to .parse() are:

stream

A stream-like object representing the body of the request.

media_type

Optional. If provided, this is the media type of the incoming request content.

Depending on the request’s Content-Type: header, this may be more specific than the renderer’s media_type attribute, and may include media type parameters. For example "text/plain; charset=utf-8".

parser_context

Optional. If supplied, this argument will be a dictionary containing any additional context that may be required to parse the request content.

By default this will include the following keys: view, request, args, kwargs.

Example

The following is an example plaintext parser that will populate the request.data property with a string representing the body of the request.

class PlainTextParser(BaseParser):
 """
 Plain text parser.
 """
 media_type = 'text/plain'

 def parse(self, stream, media_type=None, parser_context=None):
 """
 Simply return a string representing the body of the request.
 """
 return stream.read()

Third party packages

The following third party packages are also available.

YAML

REST framework YAML [http://jpadilla.github.io/django-rest-framework-yaml/] provides YAML [http://www.yaml.org/] parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.

Installation & configuration

Install using pip.

$ pip install djangorestframework-yaml

Modify your REST framework settings.

REST_FRAMEWORK = {
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework_yaml.parsers.YAMLParser',
),
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework_yaml.renderers.YAMLRenderer',
),
}

XML

REST Framework XML [http://jpadilla.github.io/django-rest-framework-xml/] provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.

Installation & configuration

Install using pip.

$ pip install djangorestframework-xml

Modify your REST framework settings.

REST_FRAMEWORK = {
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework_xml.parsers.XMLParser',
),
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework_xml.renderers.XMLRenderer',
),
}

MessagePack

MessagePack [https://github.com/juanriaza/django-rest-framework-msgpack] is a fast, efficient binary serialization format. Juan Riaza [https://github.com/juanriaza] maintains the djangorestframework-msgpack [https://github.com/juanriaza/django-rest-framework-msgpack] package which provides MessagePack renderer and parser support for REST framework.

CamelCase JSON

djangorestframework-camel-case [https://github.com/vbabiy/djangorestframework-camel-case] provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by Vitaly Babiy [https://github.com/vbabiy].

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/content-negotiation.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: negotiation.py

Content negotiation

HTTP has provisions for several mechanisms for “content negotiation” - the process of selecting the best representation for a given response when there are multiple representations available.

—

 RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html], Fielding et al.

Content negotiation is the process of selecting one of multiple possible representations to return to a client, based on client or server preferences.

Determining the accepted renderer

REST framework uses a simple style of content negotiation to determine which media type should be returned to a client, based on the available renderers, the priorities of each of those renderers, and the client’s Accept: header. The style used is partly client-driven, and partly server-driven.

		More specific media types are given preference to less specific media types.

		If multiple media types have the same specificity, then preference is given to based on the ordering of the renderers configured for the given view.

For example, given the following Accept header:

application/json; indent=4, application/json, application/yaml, text/html, */*

The priorities for each of the given media types would be:

		application/json; indent=4

		application/json, application/yaml and text/html

		/

If the requested view was only configured with renderers for YAML and HTML, then REST framework would select whichever renderer was listed first in the renderer_classes list or DEFAULT_RENDERER_CLASSES setting.

For more information on the HTTP Accept header, see RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html]

Note: “q” values are not taken into account by REST framework when determining preference. The use of “q” values negatively impacts caching, and in the author’s opinion they are an unnecessary and overcomplicated approach to content negotiation.

This is a valid approach as the HTTP spec deliberately underspecifies how a server should weight server-based preferences against client-based preferences.

Custom content negotiation

It’s unlikely that you’ll want to provide a custom content negotiation scheme for REST framework, but you can do so if needed. To implement a custom content negotiation scheme override BaseContentNegotiation.

REST framework’s content negotiation classes handle selection of both the appropriate parser for the request, and the appropriate renderer for the response, so you should implement both the .select_parser(request, parsers) and .select_renderer(request, renderers, format_suffix) methods.

The select_parser() method should return one of the parser instances from the list of available parsers, or None if none of the parsers can handle the incoming request.

The select_renderer() method should return a two-tuple of (renderer instance, media type), or raise a NotAcceptable exception.

Example

The following is a custom content negotiation class which ignores the client
request when selecting the appropriate parser or renderer.

from rest_framework.negotiation import BaseContentNegotiation

class IgnoreClientContentNegotiation(BaseContentNegotiation):
 def select_parser(self, request, parsers):
 """
 Select the first parser in the `.parser_classes` list.
 """
 return parsers[0]

 def select_renderer(self, request, renderers, format_suffix):
 """
 Select the first renderer in the `.renderer_classes` list.
 """
 return (renderers[0], renderers[0].media_type)

Setting the content negotiation

The default content negotiation class may be set globally, using the DEFAULT_CONTENT_NEGOTIATION_CLASS setting. For example, the following settings would use our example IgnoreClientContentNegotiation class.

REST_FRAMEWORK = {
 'DEFAULT_CONTENT_NEGOTIATION_CLASS': 'myapp.negotiation.IgnoreClientContentNegotiation',
}

You can also set the content negotiation used for an individual view, or viewset, using the APIView class based views.

from myapp.negotiation import IgnoreClientContentNegotiation
from rest_framework.response import Response
from rest_framework.views import APIView

class NoNegotiationView(APIView):
 """
 An example view that does not perform content negotiation.
 """
 content_negotiation_class = IgnoreClientContentNegotiation

 def get(self, request, format=None):
 return Response({
 'accepted media type': request.accepted_renderer.media_type
 })

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/viewsets.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: viewsets.py

ViewSets

After routing has determined which controller to use for a request, your controller is responsible for making sense of the request and producing the appropriate output.

—

 Ruby on Rails Documentation [http://guides.rubyonrails.org/routing.html]

Django REST framework allows you to combine the logic for a set of related views in a single class, called a ViewSet. In other frameworks you may also find conceptually similar implementations named something like ‘Resources’ or ‘Controllers’.

A ViewSet class is simply a type of class-based View, that does not provide any method handlers such as .get() or .post(), and instead provides actions such as .list() and .create().

The method handlers for a ViewSet are only bound to the corresponding actions at the point of finalizing the view, using the .as_view() method.

Typically, rather than explicitly registering the views in a viewset in the urlconf, you’ll register the viewset with a router class, that automatically determines the urlconf for you.

Example

Let’s define a simple viewset that can be used to list or retrieve all the users in the system.

from django.contrib.auth.models import User
from django.shortcuts import get_object_or_404
from myapps.serializers import UserSerializer
from rest_framework import viewsets
from rest_framework.response import Response

class UserViewSet(viewsets.ViewSet):
 """
 A simple ViewSet for listing or retrieving users.
 """
 def list(self, request):
 queryset = User.objects.all()
 serializer = UserSerializer(queryset, many=True)
 return Response(serializer.data)

 def retrieve(self, request, pk=None):
 queryset = User.objects.all()
 user = get_object_or_404(queryset, pk=pk)
 serializer = UserSerializer(user)
 return Response(serializer.data)

If we need to, we can bind this viewset into two separate views, like so:

user_list = UserViewSet.as_view({'get': 'list'})
user_detail = UserViewSet.as_view({'get': 'retrieve'})

Typically we wouldn’t do this, but would instead register the viewset with a router, and allow the urlconf to be automatically generated.

from myapp.views import UserViewSet
from rest_framework.routers import DefaultRouter

router = DefaultRouter()
router.register(r'users', UserViewSet)
urlpatterns = router.urls

Rather than writing your own viewsets, you’ll often want to use the existing base classes that provide a default set of behavior. For example:

class UserViewSet(viewsets.ModelViewSet):
 """
 A viewset for viewing and editing user instances.
 """
 serializer_class = UserSerializer
 queryset = User.objects.all()

There are two main advantages of using a ViewSet class over using a View class.

		Repeated logic can be combined into a single class. In the above example, we only need to specify the queryset once, and it’ll be used across multiple views.

		By using routers, we no longer need to deal with wiring up the URL conf ourselves.

Both of these come with a trade-off. Using regular views and URL confs is more explicit and gives you more control. ViewSets are helpful if you want to get up and running quickly, or when you have a large API and you want to enforce a consistent URL configuration throughout.

Marking extra actions for routing

The default routers included with REST framework will provide routes for a standard set of create/retrieve/update/destroy style operations, as shown below:

class UserViewSet(viewsets.ViewSet):
 """
 Example empty viewset demonstrating the standard
 actions that will be handled by a router class.

 If you're using format suffixes, make sure to also include
 the `format=None` keyword argument for each action.
 """

 def list(self, request):
 pass

 def create(self, request):
 pass

 def retrieve(self, request, pk=None):
 pass

 def update(self, request, pk=None):
 pass

 def partial_update(self, request, pk=None):
 pass

 def destroy(self, request, pk=None):
 pass

If you have ad-hoc methods that you need to be routed to, you can mark them as requiring routing using the @detail_route or @list_route decorators.

The @detail_route decorator contains pk in its URL pattern and is intended for methods which require a single instance. The @list_route decorator is intended for methods which operate on a list of objects.

For example:

from django.contrib.auth.models import User
from rest_framework import status
from rest_framework import viewsets
from rest_framework.decorators import detail_route, list_route
from rest_framework.response import Response
from myapp.serializers import UserSerializer, PasswordSerializer

class UserViewSet(viewsets.ModelViewSet):
 """
 A viewset that provides the standard actions
 """
 queryset = User.objects.all()
 serializer_class = UserSerializer

 @detail_route(methods=['post'])
 def set_password(self, request, pk=None):
 user = self.get_object()
 serializer = PasswordSerializer(data=request.data)
 if serializer.is_valid():
 user.set_password(serializer.data['password'])
 user.save()
 return Response({'status': 'password set'})
 else:
 return Response(serializer.errors,
 status=status.HTTP_400_BAD_REQUEST)

 @list_route()
 def recent_users(self, request):
 recent_users = User.objects.all().order('-last_login')

 page = self.paginate_queryset(recent_users)
 if page is not None:
 serializer = self.get_serializer(page, many=True)
 return self.get_paginated_response(serializer.data)

 serializer = self.get_serializer(recent_users, many=True)
 return Response(serializer.data)

The decorators can additionally take extra arguments that will be set for the routed view only. For example...

 @detail_route(methods=['post'], permission_classes=[IsAdminOrIsSelf])
 def set_password(self, request, pk=None):
 ...

These decorators will route GET requests by default, but may also accept other HTTP methods, by using the methods argument. For example:

 @detail_route(methods=['post', 'delete'])
 def unset_password(self, request, pk=None):
 ...

The two new actions will then be available at the urls ^users/{pk}/set_password/$ and ^users/{pk}/unset_password/$

API Reference

ViewSet

The ViewSet class inherits from APIView. You can use any of the standard attributes such as permission_classes, authentication_classes in order to control the API policy on the viewset.

The ViewSet class does not provide any implementations of actions. In order to use a ViewSet class you’ll override the class and define the action implementations explicitly.

GenericViewSet

The GenericViewSet class inherits from GenericAPIView, and provides the default set of get_object, get_queryset methods and other generic view base behavior, but does not include any actions by default.

In order to use a GenericViewSet class you’ll override the class and either mixin the required mixin classes, or define the action implementations explicitly.

ModelViewSet

The ModelViewSet class inherits from GenericAPIView and includes implementations for various actions, by mixing in the behavior of the various mixin classes.

The actions provided by the ModelViewSet class are .list(), .retrieve(), .create(), .update(), and .destroy().

Example

Because ModelViewSet extends GenericAPIView, you’ll normally need to provide at least the queryset and serializer_class attributes. For example:

class AccountViewSet(viewsets.ModelViewSet):
 """
 A simple ViewSet for viewing and editing accounts.
 """
 queryset = Account.objects.all()
 serializer_class = AccountSerializer
 permission_classes = [IsAccountAdminOrReadOnly]

Note that you can use any of the standard attributes or method overrides provided by GenericAPIView. For example, to use a ViewSet that dynamically determines the queryset it should operate on, you might do something like this:

class AccountViewSet(viewsets.ModelViewSet):
 """
 A simple ViewSet for viewing and editing the accounts
 associated with the user.
 """
 serializer_class = AccountSerializer
 permission_classes = [IsAccountAdminOrReadOnly]

 def get_queryset(self):
 return self.request.user.accounts.all()

Note however that upon removal of the queryset property from your ViewSet, any associated router will be unable to derive the base_name of your Model automatically, and so you will have to specify the base_name kwarg as part of your router registration.

Also note that although this class provides the complete set of create/list/retrieve/update/destroy actions by default, you can restrict the available operations by using the standard permission classes.

ReadOnlyModelViewSet

The ReadOnlyModelViewSet class also inherits from GenericAPIView. As with ModelViewSet it also includes implementations for various actions, but unlike ModelViewSet only provides the ‘read-only’ actions, .list() and .retrieve().

Example

As with ModelViewSet, you’ll normally need to provide at least the queryset and serializer_class attributes. For example:

class AccountViewSet(viewsets.ReadOnlyModelViewSet):
 """
 A simple ViewSet for viewing accounts.
 """
 queryset = Account.objects.all()
 serializer_class = AccountSerializer

Again, as with ModelViewSet, you can use any of the standard attributes and method overrides available to GenericAPIView.

Custom ViewSet base classes

You may need to provide custom ViewSet classes that do not have the full set of ModelViewSet actions, or that customize the behavior in some other way.

Example

To create a base viewset class that provides create, list and retrieve operations, inherit from GenericViewSet, and mixin the required actions:

class CreateListRetrieveViewSet(mixins.CreateModelMixin,
 mixins.ListModelMixin,
 mixins.RetrieveModelMixin,
 viewsets.GenericViewSet):
 """
 A viewset that provides `retrieve`, `create`, and `list` actions.

 To use it, override the class and set the `.queryset` and
 `.serializer_class` attributes.
 """
 pass

By creating your own base ViewSet classes, you can provide common behavior that can be reused in multiple viewsets across your API.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/requests.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: request.py

Requests

If you’re doing REST-based web service stuff ... you should ignore request.POST.

—

 Malcom Tredinnick, Django developers group [https://groups.google.com/d/topic/django-developers/dxI4qVzrBY4/discussion]

REST framework’s Request class extends the standard HttpRequest, adding support for REST framework’s flexible request parsing and request authentication.

Request parsing

REST framework’s Request objects provide flexible request parsing that allows you to treat requests with JSON data or other media types in the same way that you would normally deal with form data.

.data

request.data returns the parsed content of the request body. This is similar to the standard request.POST and request.FILES attributes except that:

		It includes all parsed content, including file and non-file inputs.

		It supports parsing the content of HTTP methods other than POST, meaning that you can access the content of PUT and PATCH requests.

		It supports REST framework’s flexible request parsing, rather than just supporting form data. For example you can handle incoming JSON data in the same way that you handle incoming form data.

For more details see the parsers documentation.

.query_params

request.query_params is a more correctly named synonym for request.GET.

For clarity inside your code, we recommend using request.query_params instead of the Django’s standard request.GET. Doing so will help keep your codebase more correct and obvious - any HTTP method type may include query parameters, not just GET requests.

.parsers

The APIView class or @api_view decorator will ensure that this property is automatically set to a list of Parser instances, based on the parser_classes set on the view or based on the DEFAULT_PARSER_CLASSES setting.

You won’t typically need to access this property.

Note: If a client sends malformed content, then accessing request.data may raise a ParseError. By default REST framework’s APIView class or @api_view decorator will catch the error and return a 400 Bad Request response.

If a client sends a request with a content-type that cannot be parsed then a UnsupportedMediaType exception will be raised, which by default will be caught and return a 415 Unsupported Media Type response.

Content negotiation

The request exposes some properties that allow you to determine the result of the content negotiation stage. This allows you to implement behaviour such as selecting a different serialisation schemes for different media types.

.accepted_renderer

The renderer instance what was selected by the content negotiation stage.

.accepted_media_type

A string representing the media type that was accepted by the content negotiation stage.

Authentication

REST framework provides flexible, per-request authentication, that gives you the ability to:

		Use different authentication policies for different parts of your API.

		Support the use of multiple authentication policies.

		Provide both user and token information associated with the incoming request.

.user

request.user typically returns an instance of django.contrib.auth.models.User, although the behavior depends on the authentication policy being used.

If the request is unauthenticated the default value of request.user is an instance of django.contrib.auth.models.AnonymousUser.

For more details see the authentication documentation.

.auth

request.auth returns any additional authentication context. The exact behavior of request.auth depends on the authentication policy being used, but it may typically be an instance of the token that the request was authenticated against.

If the request is unauthenticated, or if no additional context is present, the default value of request.auth is None.

For more details see the authentication documentation.

.authenticators

The APIView class or @api_view decorator will ensure that this property is automatically set to a list of Authentication instances, based on the authentication_classes set on the view or based on the DEFAULT_AUTHENTICATORS setting.

You won’t typically need to access this property.

Browser enhancements

REST framework supports a few browser enhancements such as browser-based PUT, PATCH and DELETE forms.

.method

request.method returns the uppercased string representation of the request’s HTTP method.

Browser-based PUT, PATCH and DELETE forms are transparently supported.

For more information see the browser enhancements documentation.

.content_type

request.content_type, returns a string object representing the media type of the HTTP request’s body, or an empty string if no media type was provided.

You won’t typically need to directly access the request’s content type, as you’ll normally rely on REST framework’s default request parsing behavior.

If you do need to access the content type of the request you should use the .content_type property in preference to using request.META.get('HTTP_CONTENT_TYPE'), as it provides transparent support for browser-based non-form content.

For more information see the browser enhancements documentation.

.stream

request.stream returns a stream representing the content of the request body.

You won’t typically need to directly access the request’s content, as you’ll normally rely on REST framework’s default request parsing behavior.

If you do need to access the raw content directly, you should use the .stream property in preference to using request.content, as it provides transparent support for browser-based non-form content.

For more information see the browser enhancements documentation.

Standard HttpRequest attributes

As REST framework’s Request extends Django’s HttpRequest, all the other standard attributes and methods are also available. For example the request.META and request.session dictionaries are available as normal.

Note that due to implementation reasons the Request class does not inherit from HttpRequest class, but instead extends the class using composition.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/permissions.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: permissions.py

Permissions

Authentication or identification by itself is not usually sufficient to gain access to information or code. For that, the entity requesting access must have authorization.

—

 Apple Developer Documentation [https://developer.apple.com/library/mac/#documentation/security/Conceptual/AuthenticationAndAuthorizationGuide/Authorization/Authorization.html]

Together with authentication and throttling, permissions determine whether a request should be granted or denied access.

Permission checks are always run at the very start of the view, before any other code is allowed to proceed. Permission checks will typically use the authentication information in the request.user and request.auth properties to determine if the incoming request should be permitted.

Permissions are used to grant or deny access different classes of users to different parts of the API.

The simplest style of permission would be to allow access to any authenticated user, and deny access to any unauthenticated user. This corresponds the IsAuthenticated class in REST framework.

A slightly less strict style of permission would be to allow full access to authenticated users, but allow read-only access to unauthenticated users. This corresponds to the IsAuthenticatedOrReadOnly class in REST framework.

How permissions are determined

Permissions in REST framework are always defined as a list of permission classes.

Before running the main body of the view each permission in the list is checked.
If any permission check fails an exceptions.PermissionDenied or exceptions.NotAuthenticated exception will be raised, and the main body of the view will not run.

When the permissions checks fail either a “403 Forbidden” or a “401 Unauthorized” response will be returned, according to the following rules:

		The request was successfully authenticated, but permission was denied. —

 An HTTP 403 Forbidden response will be returned.

		The request was not successfully authenticated, and the highest priority authentication class does not use WWW-Authenticate headers. —

 An HTTP 403 Forbidden response will be returned.

		The request was not successfully authenticated, and the highest priority authentication class does use WWW-Authenticate headers. —

 An HTTP 401 Unauthorized response, with an appropriate WWW-Authenticate header will be returned.

Object level permissions

REST framework permissions also support object-level permissioning. Object level permissions are used to determine if a user should be allowed to act on a particular object, which will typically be a model instance.

Object level permissions are run by REST framework’s generic views when .get_object() is called.
As with view level permissions, an exceptions.PermissionDenied exception will be raised if the user is not allowed to act on the given object.

If you’re writing your own views and want to enforce object level permissions,
or if you override the get_object method on a generic view, then you’ll need to explicitly call the .check_object_permissions(request, obj) method on the view at the point at which you’ve retrieved the object.

This will either raise a PermissionDenied or NotAuthenticated exception, or simply return if the view has the appropriate permissions.

For example:

def get_object(self):
 obj = get_object_or_404(self.get_queryset())
 self.check_object_permissions(self.request, obj)
 return obj

Limitations of object level permissions

For performance reasons the generic views will not automatically apply object level permissions to each instance in a queryset when returning a list of objects.

Often when you’re using object level permissions you’ll also want to filter the queryset appropriately, to ensure that users only have visibility onto instances that they are permitted to view.

Setting the permission policy

The default permission policy may be set globally, using the DEFAULT_PERMISSION_CLASSES setting. For example.

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.IsAuthenticated',
)
}

If not specified, this setting defaults to allowing unrestricted access:

'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.AllowAny',
)

You can also set the authentication policy on a per-view, or per-viewset basis,
using the APIView class based views.

from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response
from rest_framework.views import APIView

class ExampleView(APIView):
 permission_classes = (IsAuthenticated,)

 def get(self, request, format=None):
 content = {
 'status': 'request was permitted'
 }
 return Response(content)

Or, if you’re using the @api_view decorator with function based views.

from rest_framework.decorators import api_view, permission_classes
from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response

@api_view('GET')
@permission_classes((IsAuthenticated,))
def example_view(request, format=None):
 content = {
 'status': 'request was permitted'
 }
 return Response(content)

API Reference

AllowAny

The AllowAny permission class will allow unrestricted access, regardless of if the request was authenticated or unauthenticated.

This permission is not strictly required, since you can achieve the same result by using an empty list or tuple for the permissions setting, but you may find it useful to specify this class because it makes the intention explicit.

IsAuthenticated

The IsAuthenticated permission class will deny permission to any unauthenticated user, and allow permission otherwise.

This permission is suitable if you want your API to only be accessible to registered users.

IsAdminUser

The IsAdminUser permission class will deny permission to any user, unless user.is_staff is True in which case permission will be allowed.

This permission is suitable if you want your API to only be accessible to a subset of trusted administrators.

IsAuthenticatedOrReadOnly

The IsAuthenticatedOrReadOnly will allow authenticated users to perform any request. Requests for unauthorised users will only be permitted if the request method is one of the “safe” methods; GET, HEAD or OPTIONS.

This permission is suitable if you want to your API to allow read permissions to anonymous users, and only allow write permissions to authenticated users.

DjangoModelPermissions

This permission class ties into Django’s standard django.contrib.auth model permissions [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#custom-permissions]. This permission must only be applied to views that has a .queryset property set. Authorization will only be granted if the user is authenticated and has the relevant model permissions assigned.

		POST requests require the user to have the add permission on the model.

		PUT and PATCH requests require the user to have the change permission on the model.

		DELETE requests require the user to have the delete permission on the model.

The default behaviour can also be overridden to support custom model permissions. For example, you might want to include a view model permission for GET requests.

To use custom model permissions, override DjangoModelPermissions and set the .perms_map property. Refer to the source code for details.

Using with views that do not include a queryset attribute.

If you’re using this permission with a view that uses an overridden get_queryset() method there may not be a queryset attribute on the view. In this case we suggest also marking the view with a sential queryset, so that this class can determine the required permissions. For example:

queryset = User.objects.none() # Required for DjangoModelPermissions

DjangoModelPermissionsOrAnonReadOnly

Similar to DjangoModelPermissions, but also allows unauthenticated users to have read-only access to the API.

DjangoObjectPermissions

This permission class ties into Django’s standard object permissions framework [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#handling-object-permissions] that allows per-object permissions on models. In order to use this permission class, you’ll also need to add a permission backend that supports object-level permissions, such as django-guardian [https://github.com/lukaszb/django-guardian].

As with DjangoModelPermissions, this permission must only be applied to views that have a .queryset property or .get_queryset() method. Authorization will only be granted if the user is authenticated and has the relevant per-object permissions and relevant model permissions assigned.

		POST requests require the user to have the add permission on the model instance.

		PUT and PATCH requests require the user to have the change permission on the model instance.

		DELETE requests require the user to have the delete permission on the model instance.

Note that DjangoObjectPermissions does not require the django-guardian package, and should support other object-level backends equally well.

As with DjangoModelPermissions you can use custom model permissions by overriding DjangoModelPermissions and setting the .perms_map property. Refer to the source code for details.

Note: If you need object level view permissions for GET, HEAD and OPTIONS requests, you’ll want to consider also adding the DjangoObjectPermissionsFilter class to ensure that list endpoints only return results including objects for which the user has appropriate view permissions.

Custom permissions

To implement a custom permission, override BasePermission and implement either, or both, of the following methods:

		.has_permission(self, request, view)

		.has_object_permission(self, request, view, obj)

The methods should return True if the request should be granted access, and False otherwise.

If you need to test if a request is a read operation or a write operation, you should check the request method against the constant SAFE_METHODS, which is a tuple containing 'GET', 'OPTIONS' and 'HEAD'. For example:

if request.method in permissions.SAFE_METHODS:
 # Check permissions for read-only request
else:
 # Check permissions for write request

Note: The instance-level has_object_permission method will only be called if the view-level has_permission checks have already passed. Also note that in order for the instance-level checks to run, the view code should explicitly call .check_object_permissions(request, obj). If you are using the generic views then this will be handled for you by default.

Custom permissions will raise a PermissionDenied exception if the test fails. To change the error message associated with the exception, implement a message attribute directly on your custom permission. Otherwise the default_detail attribute from PermissionDenied will be used.

from rest_framework import permissions

class CustomerAccessPermission(permissions.BasePermission):
 message = 'Adding customers not allowed.'

 def has_permission(self, request, view):
 ...

Examples

The following is an example of a permission class that checks the incoming request’s IP address against a blacklist, and denies the request if the IP has been blacklisted.

from rest_framework import permissions

class BlacklistPermission(permissions.BasePermission):
 """
 Global permission check for blacklisted IPs.
 """

 def has_permission(self, request, view):
 ip_addr = request.META['REMOTE_ADDR']
 blacklisted = Blacklist.objects.filter(ip_addr=ip_addr).exists()
 return not blacklisted

As well as global permissions, that are run against all incoming requests, you can also create object-level permissions, that are only run against operations that affect a particular object instance. For example:

class IsOwnerOrReadOnly(permissions.BasePermission):
 """
 Object-level permission to only allow owners of an object to edit it.
 Assumes the model instance has an `owner` attribute.
 """

 def has_object_permission(self, request, view, obj):
 # Read permissions are allowed to any request,
 # so we'll always allow GET, HEAD or OPTIONS requests.
 if request.method in permissions.SAFE_METHODS:
 return True

 # Instance must have an attribute named `owner`.
 return obj.owner == request.user

Note that the generic views will check the appropriate object level permissions, but if you’re writing your own custom views, you’ll need to make sure you check the object level permission checks yourself. You can do so by calling self.check_object_permissions(request, obj) from the view once you have the object instance. This call will raise an appropriate APIException if any object-level permission checks fail, and will otherwise simply return.

Also note that the generic views will only check the object-level permissions for views that retrieve a single model instance. If you require object-level filtering of list views, you’ll need to filter the queryset separately. See the filtering documentation for more details.

Third party packages

The following third party packages are also available.

Composed Permissions

The Composed Permissions [https://github.com/niwibe/djangorestframework-composed-permissions] package provides a simple way to define complex and multi-depth (with logic operators) permission objects, using small and reusable components.

REST Condition

The REST Condition [https://github.com/caxap/rest_condition] package is another extension for building complex permissions in a simple and convenient way. The extension allows you to combine permissions with logical operators.

DRY Rest Permissions

The DRY Rest Permissions [https://github.com/Helioscene/dry-rest-permissions] package provides the ability to define different permissions for individual default and custom actions. This package is made for apps with permissions that are derived from relationships defined in the app’s data model. It also supports permission checks being returned to a client app through the API’s serializer. Additionally it supports adding permissions to the default and custom list actions to restrict the data they retrive per user.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/status-codes.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: status.py

Status Codes

418 I’m a teapot - Any attempt to brew coffee with a teapot should result in the error code “418 I’m a teapot”. The resulting entity body MAY be short and stout.

—

 RFC 2324 [http://www.ietf.org/rfc/rfc2324.txt], Hyper Text Coffee Pot Control Protocol

Using bare status codes in your responses isn’t recommended. REST framework includes a set of named constants that you can use to make more code more obvious and readable.

from rest_framework import status
from rest_framework.response import Response

def empty_view(self):
 content = {'please move along': 'nothing to see here'}
 return Response(content, status=status.HTTP_404_NOT_FOUND)

The full set of HTTP status codes included in the status module is listed below.

The module also includes a set of helper functions for testing if a status code is in a given range.

from rest_framework import status
from rest_framework.test import APITestCase

class ExampleTestCase(APITestCase):
 def test_url_root(self):
 url = reverse('index')
 response = self.client.get(url)
 self.assertTrue(status.is_success(response.status_code))

For more information on proper usage of HTTP status codes see RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html]
and RFC 6585 [http://tools.ietf.org/html/rfc6585].

Informational - 1xx

This class of status code indicates a provisional response. There are no 1xx status codes used in REST framework by default.

HTTP_100_CONTINUE
HTTP_101_SWITCHING_PROTOCOLS

Successful - 2xx

This class of status code indicates that the client’s request was successfully received, understood, and accepted.

HTTP_200_OK
HTTP_201_CREATED
HTTP_202_ACCEPTED
HTTP_203_NON_AUTHORITATIVE_INFORMATION
HTTP_204_NO_CONTENT
HTTP_205_RESET_CONTENT
HTTP_206_PARTIAL_CONTENT

Redirection - 3xx

This class of status code indicates that further action needs to be taken by the user agent in order to fulfill the request.

HTTP_300_MULTIPLE_CHOICES
HTTP_301_MOVED_PERMANENTLY
HTTP_302_FOUND
HTTP_303_SEE_OTHER
HTTP_304_NOT_MODIFIED
HTTP_305_USE_PROXY
HTTP_306_RESERVED
HTTP_307_TEMPORARY_REDIRECT

Client Error - 4xx

The 4xx class of status code is intended for cases in which the client seems to have erred. Except when responding to a HEAD request, the server SHOULD include an entity containing an explanation of the error situation, and whether it is a temporary or permanent condition.

HTTP_400_BAD_REQUEST
HTTP_401_UNAUTHORIZED
HTTP_402_PAYMENT_REQUIRED
HTTP_403_FORBIDDEN
HTTP_404_NOT_FOUND
HTTP_405_METHOD_NOT_ALLOWED
HTTP_406_NOT_ACCEPTABLE
HTTP_407_PROXY_AUTHENTICATION_REQUIRED
HTTP_408_REQUEST_TIMEOUT
HTTP_409_CONFLICT
HTTP_410_GONE
HTTP_411_LENGTH_REQUIRED
HTTP_412_PRECONDITION_FAILED
HTTP_413_REQUEST_ENTITY_TOO_LARGE
HTTP_414_REQUEST_URI_TOO_LONG
HTTP_415_UNSUPPORTED_MEDIA_TYPE
HTTP_416_REQUESTED_RANGE_NOT_SATISFIABLE
HTTP_417_EXPECTATION_FAILED
HTTP_428_PRECONDITION_REQUIRED
HTTP_429_TOO_MANY_REQUESTS
HTTP_431_REQUEST_HEADER_FIELDS_TOO_LARGE

Server Error - 5xx

Response status codes beginning with the digit “5” indicate cases in which the server is aware that it has erred or is incapable of performing the request. Except when responding to a HEAD request, the server SHOULD include an entity containing an explanation of the error situation, and whether it is a temporary or permanent condition.

HTTP_500_INTERNAL_SERVER_ERROR
HTTP_501_NOT_IMPLEMENTED
HTTP_502_BAD_GATEWAY
HTTP_503_SERVICE_UNAVAILABLE
HTTP_504_GATEWAY_TIMEOUT
HTTP_505_HTTP_VERSION_NOT_SUPPORTED
HTTP_511_NETWORK_AUTHENTICATION_REQUIRED

Helper functions

The following helper functions are available for identifying the category of the response code.

is_informational() # 1xx
is_success() # 2xx
is_redirect() # 3xx
is_client_error() # 4xx
is_server_error() # 5xx

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/metadata.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: metadata.py

Metadata

[The OPTIONS] method allows a client to determine the options and/or requirements associated with a resource, or the capabilities of a server, without implying a resource action or initiating a resource retrieval.

—

 RFC7231, Section 4.3.7. [http://tools.ietf.org/html/rfc7231#section-4.3.7]

REST framework includes a configurable mechanism for determining how your API should respond to OPTIONS requests. This allows you to return API schema or other resource information.

There are not currently any widely adopted conventions for exactly what style of response should be returned for HTTP OPTIONS requests, so we provide an ad-hoc style that returns some useful information.

Here’s an example response that demonstrates the information that is returned by default.

HTTP 200 OK
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json

{
 "name": "To Do List",
 "description": "List existing 'To Do' items, or create a new item.",
 "renders": [
 "application/json",
 "text/html"
],
 "parses": [
 "application/json",
 "application/x-www-form-urlencoded",
 "multipart/form-data"
],
 "actions": {
 "POST": {
 "note": {
 "type": "string",
 "required": false,
 "read_only": false,
 "label": "title",
 "max_length": 100
 }
 }
 }
}

Setting the metadata scheme

You can set the metadata class globally using the 'DEFAULT_METADATA_CLASS' settings key:

REST_FRAMEWORK = {
 'DEFAULT_METADATA_CLASS': 'rest_framework.metadata.SimpleMetadata'
}

Or you can set the metadata class individually for a view:

class APIRoot(APIView):
 metadata_class = APIRootMetadata

 def get(self, request, format=None):
 return Response({
 ...
 })

The REST framework package only includes a single metadata class implementation, named SimpleMetadata. If you want to use an alternative style you’ll need to implement a custom metadata class.

Creating schema endpoints

If you have specific requirements for creating schema endpoints that are accessed with regular GET requests, you might consider re-using the metadata API for doing so.

For example, the following additional route could be used on a viewset to provide a linkable schema endpoint.

@list_route(methods=['GET'])
def schema(self, request):
 meta = self.metadata_class()
 data = meta.determine_metadata(request, self)
 return Response(data)

There are a couple of reasons that you might choose to take this approach, including that OPTIONS responses are not cacheable [https://www.mnot.net/blog/2012/10/29/NO_OPTIONS].

Custom metadata classes

If you want to provide a custom metadata class you should override BaseMetadata and implement the determine_metadata(self, request, view) method.

Useful things that you might want to do could include returning schema information, using a format such as JSON schema [http://json-schema.org/], or returning debug information to admin users.

Example

The following class could be used to limit the information that is returned to OPTIONS requests.

class MinimalMetadata(BaseMetadata):
 """
 Don't include field and other information for `OPTIONS` requests.
 Just return the name and description.
 """
 def determine_metadata(self, request, view):
 return {
 'name': view.get_view_name(),
 'description': view.get_view_description()
 }

Then configure your settings to use this custom class:

REST_FRAMEWORK = {
 'DEFAULT_METADATA_CLASS': 'myproject.apps.core.MinimalMetadata'
}

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/format-suffixes.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: urlpatterns.py

Format suffixes

Section 6.2.1 does not say that content negotiation should be
used all the time.

—

 Roy Fielding, REST discuss mailing list [http://tech.groups.yahoo.com/group/rest-discuss/message/5857]

A common pattern for Web APIs is to use filename extensions on URLs to provide an endpoint for a given media type. For example, ‘http://example.com/api/users.json’ to serve a JSON representation.

Adding format-suffix patterns to each individual entry in the URLconf for your API is error-prone and non-DRY, so REST framework provides a shortcut to adding these patterns to your URLConf.

format_suffix_patterns

Signature: format_suffix_patterns(urlpatterns, suffix_required=False, allowed=None)

Returns a URL pattern list which includes format suffix patterns appended to each of the URL patterns provided.

Arguments:

		urlpatterns: Required. A URL pattern list.

		suffix_required: Optional. A boolean indicating if suffixes in the URLs should be optional or mandatory. Defaults to False, meaning that suffixes are optional by default.

		allowed: Optional. A list or tuple of valid format suffixes. If not provided, a wildcard format suffix pattern will be used.

Example:

from rest_framework.urlpatterns import format_suffix_patterns
from blog import views

urlpatterns = [
 url(r'^/$', views.apt_root),
 url(r'^comments/$', views.comment_list),
 url(r'^comments/(?P<pk>[0-9]+)/$', views.comment_detail)
]

urlpatterns = format_suffix_patterns(urlpatterns, allowed=['json', 'html'])

When using format_suffix_patterns, you must make sure to add the 'format' keyword argument to the corresponding views. For example:

@api_view(('GET', 'POST'))
def comment_list(request, format=None):
 # do stuff...

Or with class based views:

class CommentList(APIView):
 def get(self, request, format=None):
 # do stuff...

 def post(self, request, format=None):
 # do stuff...

The name of the kwarg used may be modified by using the FORMAT_SUFFIX_KWARG setting.

Also note that format_suffix_patterns does not support descending into include URL patterns.

Using with i18n_patterns

If using the i18n_patterns function provided by Django, as well as format_suffix_patterns you should make sure that the i18n_patterns function is applied as the final, or outermost function. For example:

url patterns = [
 …
]

urlpatterns = i18n_patterns(
 format_suffix_patterns(urlpatterns, allowed=['json', 'html'])
)

Query parameter formats

An alternative to the format suffixes is to include the requested format in a query parameter. REST framework provides this option by default, and it is used in the browsable API to switch between differing available representations.

To select a representation using its short format, use the format query parameter. For example: http://example.com/organizations/?format=csv.

The name of this query parameter can be modified using the URL_FORMAT_OVERRIDE setting. Set the value to None to disable this behavior.

Accept headers vs. format suffixes

There seems to be a view among some of the Web community that filename extensions are not a RESTful pattern, and that HTTP Accept headers should always be used instead.

It is actually a misconception. For example, take the following quote from Roy Fielding discussing the relative merits of query parameter media-type indicators vs. file extension media-type indicators:

“

That’s why I always prefer extensions. Neither choice has anything to do with REST.”

 —

 Roy Fielding, REST discuss mailing list [http://tech.groups.yahoo.com/group/rest-discuss/message/14844]

The quote does not mention Accept headers, but it does make it clear that format suffixes should be considered an acceptable pattern.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/testing.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: test.py

Testing

Code without tests is broken as designed.

—

 Jacob Kaplan-Moss [http://jacobian.org/writing/django-apps-with-buildout/#s-create-a-test-wrapper]

REST framework includes a few helper classes that extend Django’s existing test framework, and improve support for making API requests.

APIRequestFactory

Extends Django’s existing RequestFactory class [https://docs.djangoproject.com/en/dev/topics/testing/advanced/#django.test.client.RequestFactory].

Creating test requests

The APIRequestFactory class supports an almost identical API to Django’s standard RequestFactory class. This means that the standard .get(), .post(), .put(), .patch(), .delete(), .head() and .options() methods are all available.

from rest_framework.test import APIRequestFactory

Using the standard RequestFactory API to create a form POST request
factory = APIRequestFactory()
request = factory.post('/notes/', {'title': 'new idea'})

Using the format argument

Methods which create a request body, such as post, put and patch, include a format argument, which make it easy to generate requests using a content type other than multipart form data. For example:

Create a JSON POST request
factory = APIRequestFactory()
request = factory.post('/notes/', {'title': 'new idea'}, format='json')

By default the available formats are 'multipart' and 'json'. For compatibility with Django’s existing RequestFactory the default format is 'multipart'.

To support a wider set of request formats, or change the default format, see the configuration section.

Explicitly encoding the request body

If you need to explicitly encode the request body, you can do so by setting the content_type flag. For example:

request = factory.post('/notes/', json.dumps({'title': 'new idea'}), content_type='application/json')

PUT and PATCH with form data

One difference worth noting between Django’s RequestFactory and REST framework’s APIRequestFactory is that multipart form data will be encoded for methods other than just .post().

For example, using APIRequestFactory, you can make a form PUT request like so:

factory = APIRequestFactory()
request = factory.put('/notes/547/', {'title': 'remember to email dave'})

Using Django’s RequestFactory, you’d need to explicitly encode the data yourself:

from django.test.client import encode_multipart, RequestFactory

factory = RequestFactory()
data = {'title': 'remember to email dave'}
content = encode_multipart('BoUnDaRyStRiNg', data)
content_type = 'multipart/form-data; boundary=BoUnDaRyStRiNg'
request = factory.put('/notes/547/', content, content_type=content_type)

Forcing authentication

When testing views directly using a request factory, it’s often convenient to be able to directly authenticate the request, rather than having to construct the correct authentication credentials.

To forcibly authenticate a request, use the force_authenticate() method.

from rest_framework.test import force_authenticate

factory = APIRequestFactory()
user = User.objects.get(username='olivia')
view = AccountDetail.as_view()

Make an authenticated request to the view...
request = factory.get('/accounts/django-superstars/')
force_authenticate(request, user=user)
response = view(request)

The signature for the method is force_authenticate(request, user=None, token=None). When making the call, either or both of the user and token may be set.

For example, when forcibly authenticating using a token, you might do something like the following:

user = User.objects.get(username='olivia')
request = factory.get('/accounts/django-superstars/')
force_authenticate(request, user=user, token=user.token)

Note: When using APIRequestFactory, the object that is returned is Django’s standard HttpRequest, and not REST framework’s Request object, which is only generated once the view is called.

This means that setting attributes directly on the request object may not always have the effect you expect. For example, setting .token directly will have no effect, and setting .user directly will only work if session authentication is being used.

Request will only authenticate if `SessionAuthentication` is in use.
request = factory.get('/accounts/django-superstars/')
request.user = user
response = view(request)

Forcing CSRF validation

By default, requests created with APIRequestFactory will not have CSRF validation applied when passed to a REST framework view. If you need to explicitly turn CSRF validation on, you can do so by setting the enforce_csrf_checks flag when instantiating the factory.

factory = APIRequestFactory(enforce_csrf_checks=True)

Note: It’s worth noting that Django’s standard RequestFactory doesn’t need to include this option, because when using regular Django the CSRF validation takes place in middleware, which is not run when testing views directly. When using REST framework, CSRF validation takes place inside the view, so the request factory needs to disable view-level CSRF checks.

APIClient

Extends Django’s existing Client class [https://docs.djangoproject.com/en/dev/topics/testing/tools/#the-test-client].

Making requests

The APIClient class supports the same request interface as Django’s standard Client class. This means the that standard .get(), .post(), .put(), .patch(), .delete(), .head() and .options() methods are all available. For example:

from rest_framework.test import APIClient

client = APIClient()
client.post('/notes/', {'title': 'new idea'}, format='json')

To support a wider set of request formats, or change the default format, see the configuration section.

Authenticating

.login(**kwargs)

The login method functions exactly as it does with Django’s regular Client class. This allows you to authenticate requests against any views which include SessionAuthentication.

Make all requests in the context of a logged in session.
client = APIClient()
client.login(username='lauren', password='secret')

To logout, call the logout method as usual.

Log out
client.logout()

The login method is appropriate for testing APIs that use session authentication, for example web sites which include AJAX interaction with the API.

.credentials(**kwargs)

The credentials method can be used to set headers that will then be included on all subsequent requests by the test client.

from rest_framework.authtoken.models import Token
from rest_framework.test import APIClient

Include an appropriate `Authorization:` header on all requests.
token = Token.objects.get(user__username='lauren')
client = APIClient()
client.credentials(HTTP_AUTHORIZATION='Token ' + token.key)

Note that calling credentials a second time overwrites any existing credentials. You can unset any existing credentials by calling the method with no arguments.

Stop including any credentials
client.credentials()

The credentials method is appropriate for testing APIs that require authentication headers, such as basic authentication, OAuth1a and OAuth2 authentication, and simple token authentication schemes.

.force_authenticate(user=None, token=None)

Sometimes you may want to bypass authentication, and simple force all requests by the test client to be automatically treated as authenticated.

This can be a useful shortcut if you’re testing the API but don’t want to have to construct valid authentication credentials in order to make test requests.

user = User.objects.get(username='lauren')
client = APIClient()
client.force_authenticate(user=user)

To unauthenticate subsequent requests, call force_authenticate setting the user and/or token to None.

client.force_authenticate(user=None)

CSRF validation

By default CSRF validation is not applied when using APIClient. If you need to explicitly enable CSRF validation, you can do so by setting the enforce_csrf_checks flag when instantiating the client.

client = APIClient(enforce_csrf_checks=True)

As usual CSRF validation will only apply to any session authenticated views. This means CSRF validation will only occur if the client has been logged in by calling login().

Test cases

REST framework includes the following test case classes, that mirror the existing Django test case classes, but use APIClient instead of Django’s default Client.

		APISimpleTestCase

		APITransactionTestCase

		APITestCase

		APILiveServerTestCase

Example

You can use any of REST framework’s test case classes as you would for the regular Django test case classes. The self.client attribute will be an APIClient instance.

from django.core.urlresolvers import reverse
from rest_framework import status
from rest_framework.test import APITestCase
from myproject.apps.core.models import Account

class AccountTests(APITestCase):
 def test_create_account(self):
 """
 Ensure we can create a new account object.
 """
 url = reverse('account-list')
 data = {'name': 'DabApps'}
 response = self.client.post(url, data, format='json')
 self.assertEqual(response.status_code, status.HTTP_201_CREATED)
 self.assertEqual(Account.objects.count(), 1)
 self.assertEqual(Account.objects.get().name, 'DabApps')

Testing responses

Checking the response data

When checking the validity of test responses it’s often more convenient to inspect the data that the response was created with, rather than inspecting the fully rendered response.

For example, it’s easier to inspect response.data:

response = self.client.get('/users/4/')
self.assertEqual(response.data, {'id': 4, 'username': 'lauren'})

Instead of inspecting the result of parsing response.content:

response = self.client.get('/users/4/')
self.assertEqual(json.loads(response.content), {'id': 4, 'username': 'lauren'})

Rendering responses

If you’re testing views directly using APIRequestFactory, the responses that are returned will not yet be rendered, as rendering of template responses is performed by Django’s internal request-response cycle. In order to access response.content, you’ll first need to render the response.

view = UserDetail.as_view()
request = factory.get('/users/4')
response = view(request, pk='4')
response.render() # Cannot access `response.content` without this.
self.assertEqual(response.content, '{"username": "lauren", "id": 4}')

Configuration

Setting the default format

The default format used to make test requests may be set using the TEST_REQUEST_DEFAULT_FORMAT setting key. For example, to always use JSON for test requests by default instead of standard multipart form requests, set the following in your settings.py file:

REST_FRAMEWORK = {
 ...
 'TEST_REQUEST_DEFAULT_FORMAT': 'json'
}

Setting the available formats

If you need to test requests using something other than multipart or json requests, you can do so by setting the TEST_REQUEST_RENDERER_CLASSES setting.

For example, to add support for using format='html' in test requests, you might have something like this in your settings.py file.

REST_FRAMEWORK = {
 ...
 'TEST_REQUEST_RENDERER_CLASSES': (
 'rest_framework.renderers.MultiPartRenderer',
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.TemplateHTMLRenderer'
)
}

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/authentication.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: authentication.py

Authentication

Auth needs to be pluggable.

—

 Jacob Kaplan-Moss, “REST worst practices” [http://jacobian.org/writing/rest-worst-practices/]

Authentication is the mechanism of associating an incoming request with a set of identifying credentials, such as the user the request came from, or the token that it was signed with. The permission and throttling policies can then use those credentials to determine if the request should be permitted.

REST framework provides a number of authentication schemes out of the box, and also allows you to implement custom schemes.

Authentication is always run at the very start of the view, before the permission and throttling checks occur, and before any other code is allowed to proceed.

The request.user property will typically be set to an instance of the contrib.auth package’s User class.

The request.auth property is used for any additional authentication information, for example, it may be used to represent an authentication token that the request was signed with.

Note: Don’t forget that authentication by itself won’t allow or disallow an incoming request, it simply identifies the credentials that the request was made with.

For information on how to setup the permission polices for your API please see the permissions documentation.

How authentication is determined

The authentication schemes are always defined as a list of classes. REST framework will attempt to authenticate with each class in the list, and will set request.user and request.auth using the return value of the first class that successfully authenticates.

If no class authenticates, request.user will be set to an instance of django.contrib.auth.models.AnonymousUser, and request.auth will be set to None.

The value of request.user and request.auth for unauthenticated requests can be modified using the UNAUTHENTICATED_USER and UNAUTHENTICATED_TOKEN settings.

Setting the authentication scheme

The default authentication schemes may be set globally, using the DEFAULT_AUTHENTICATION_CLASSES setting. For example.

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
)
}

You can also set the authentication scheme on a per-view or per-viewset basis,
using the APIView class based views.

from rest_framework.authentication import SessionAuthentication, BasicAuthentication
from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response
from rest_framework.views import APIView

class ExampleView(APIView):
 authentication_classes = (SessionAuthentication, BasicAuthentication)
 permission_classes = (IsAuthenticated,)

 def get(self, request, format=None):
 content = {
 'user': unicode(request.user), # `django.contrib.auth.User` instance.
 'auth': unicode(request.auth), # None
 }
 return Response(content)

Or, if you’re using the @api_view decorator with function based views.

@api_view(['GET'])
@authentication_classes((SessionAuthentication, BasicAuthentication))
@permission_classes((IsAuthenticated,))
def example_view(request, format=None):
 content = {
 'user': unicode(request.user), # `django.contrib.auth.User` instance.
 'auth': unicode(request.auth), # None
 }
 return Response(content)

Unauthorized and Forbidden responses

When an unauthenticated request is denied permission there are two different error codes that may be appropriate.

		HTTP 401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2]

		HTTP 403 Permission Denied [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4]

HTTP 401 responses must always include a WWW-Authenticate header, that instructs the client how to authenticate. HTTP 403 responses do not include the WWW-Authenticate header.

The kind of response that will be used depends on the authentication scheme. Although multiple authentication schemes may be in use, only one scheme may be used to determine the type of response. The first authentication class set on the view is used when determining the type of response.

Note that when a request may successfully authenticate, but still be denied permission to perform the request, in which case a 403 Permission Denied response will always be used, regardless of the authentication scheme.

Apache mod_wsgi specific configuration

Note that if deploying to Apache using mod_wsgi [http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIPassAuthorization], the authorization header is not passed through to a WSGI application by default, as it is assumed that authentication will be handled by Apache, rather than at an application level.

If you are deploying to Apache, and using any non-session based authentication, you will need to explicitly configure mod_wsgi to pass the required headers through to the application. This can be done by specifying the WSGIPassAuthorization directive in the appropriate context and setting it to 'On'.

this can go in either server config, virtual host, directory or .htaccess
WSGIPassAuthorization On

API Reference

BasicAuthentication

This authentication scheme uses HTTP Basic Authentication [http://tools.ietf.org/html/rfc2617], signed against a user’s username and password. Basic authentication is generally only appropriate for testing.

If successfully authenticated, BasicAuthentication provides the following credentials.

		request.user will be a Django User instance.

		request.auth will be None.

Unauthenticated responses that are denied permission will result in an HTTP 401 Unauthorized response with an appropriate WWW-Authenticate header. For example:

WWW-Authenticate: Basic realm="api"

Note: If you use BasicAuthentication in production you must ensure that your API is only available over https. You should also ensure that your API clients will always re-request the username and password at login, and will never store those details to persistent storage.

TokenAuthentication

This authentication scheme uses a simple token-based HTTP Authentication scheme. Token authentication is appropriate for client-server setups, such as native desktop and mobile clients.

To use the TokenAuthentication scheme you’ll need to configure the authentication classes to include TokenAuthentication, and additionally include rest_framework.authtoken in your INSTALLED_APPS setting:

INSTALLED_APPS = (
 ...
 'rest_framework.authtoken'
)

Note: Make sure to run manage.py syncdb after changing your settings. The rest_framework.authtoken app provides both Django (from v1.7) and South database migrations. See Schema migrations below.

You’ll also need to create tokens for your users.

from rest_framework.authtoken.models import Token

token = Token.objects.create(user=...)
print token.key

For clients to authenticate, the token key should be included in the Authorization HTTP header. The key should be prefixed by the string literal “Token”, with whitespace separating the two strings. For example:

Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

If successfully authenticated, TokenAuthentication provides the following credentials.

		request.user will be a Django User instance.

		request.auth will be a rest_framework.authtoken.models.BasicToken instance.

Unauthenticated responses that are denied permission will result in an HTTP 401 Unauthorized response with an appropriate WWW-Authenticate header. For example:

WWW-Authenticate: Token

The curl command line tool may be useful for testing token authenticated APIs. For example:

curl -X GET http://127.0.0.1:8000/api/example/ -H 'Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b'

Note: If you use TokenAuthentication in production you must ensure that your API is only available over https.

Generating Tokens

If you want every user to have an automatically generated Token, you can simply catch the User’s post_save signal.

from django.conf import settings
from django.db.models.signals import post_save
from django.dispatch import receiver
from rest_framework.authtoken.models import Token

@receiver(post_save, sender=settings.AUTH_USER_MODEL)
def create_auth_token(sender, instance=None, created=False, **kwargs):
 if created:
 Token.objects.create(user=instance)

Note that you’ll want to ensure you place this code snippet in an installed models.py module, or some other location that will be imported by Django on startup.

If you’ve already created some users, you can generate tokens for all existing users like this:

from django.contrib.auth.models import User
from rest_framework.authtoken.models import Token

for user in User.objects.all():
 Token.objects.get_or_create(user=user)

When using TokenAuthentication, you may want to provide a mechanism for clients to obtain a token given the username and password. REST framework provides a built-in view to provide this behavior. To use it, add the obtain_auth_token view to your URLconf:

from rest_framework.authtoken import views
urlpatterns += [
 url(r'^api-token-auth/', views.obtain_auth_token)
]

Note that the URL part of the pattern can be whatever you want to use.

The obtain_auth_token view will return a JSON response when valid username and password fields are POSTed to the view using form data or JSON:

{ 'token' : '9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b' }

Note that the default obtain_auth_token view explicitly uses JSON requests and responses, rather than using default renderer and parser classes in your settings. If you need a customized version of the obtain_auth_token view, you can do so by overriding the ObtainAuthToken view class, and using that in your url conf instead.

Schema migrations

The rest_framework.authtoken app includes both Django native migrations (for Django versions >1.7) and South migrations (for Django versions <1.7) that will create the authtoken table.

Note: From REST Framework v2.4.0 using South with Django <1.7 requires upgrading South v1.0+

If you’re using a custom user model [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#specifying-a-custom-user-model] you’ll need to make sure that any initial migration that creates the user table runs before the authtoken table is created.

You can do so by inserting a needed_by attribute in your user migration:

class Migration:

 needed_by = (
 ('authtoken', '0001_initial'),
)

 def forwards(self):
 ...

For more details, see the south documentation on dependencies [http://south.readthedocs.org/en/latest/dependencies.html].

Also note that if you’re using a post_save signal to create tokens, then the first time you create the database tables, you’ll need to ensure any migrations are run prior to creating any superusers. For example:

python manage.py syncdb --noinput # Won't create a superuser just yet, due to `--noinput`.
python manage.py migrate
python manage.py createsuperuser

SessionAuthentication

This authentication scheme uses Django’s default session backend for authentication. Session authentication is appropriate for AJAX clients that are running in the same session context as your website.

If successfully authenticated, SessionAuthentication provides the following credentials.

		request.user will be a Django User instance.

		request.auth will be None.

Unauthenticated responses that are denied permission will result in an HTTP 403 Forbidden response.

If you’re using an AJAX style API with SessionAuthentication, you’ll need to make sure you include a valid CSRF token for any “unsafe” HTTP method calls, such as PUT, PATCH, POST or DELETE requests. See the Django CSRF documentation [https://docs.djangoproject.com/en/dev/ref/csrf/#ajax] for more details.

Warning: Always use Django’s standard login view when creating login pages. This will ensure your login views are properly protected.

CSRF validation in REST framework works slightly differently to standard Django due to the need to support both session and non-session based authentication to the same views. This means that only authenticated requests require CSRF tokens, and anonymous requests may be sent without CSRF tokens. This behaviour is not suitable for login views, which should always have CSRF validation applied.

Custom authentication

To implement a custom authentication scheme, subclass BaseAuthentication and override the .authenticate(self, request) method. The method should return a two-tuple of (user, auth) if authentication succeeds, or None otherwise.

In some circumstances instead of returning None, you may want to raise an AuthenticationFailed exception from the .authenticate() method.

Typically the approach you should take is:

		If authentication is not attempted, return None. Any other authentication schemes also in use will still be checked.

		If authentication is attempted but fails, raise a AuthenticationFailed exception. An error response will be returned immediately, regardless of any permissions checks, and without checking any other authentication schemes.

You may also override the .authenticate_header(self, request) method. If implemented, it should return a string that will be used as the value of the WWW-Authenticate header in a HTTP 401 Unauthorized response.

If the .authenticate_header() method is not overridden, the authentication scheme will return HTTP 403 Forbidden responses when an unauthenticated request is denied access.

Example

The following example will authenticate any incoming request as the user given by the username in a custom request header named ‘X_USERNAME’.

from django.contrib.auth.models import User
from rest_framework import authentication
from rest_framework import exceptions

class ExampleAuthentication(authentication.BaseAuthentication):
 def authenticate(self, request):
 username = request.META.get('X_USERNAME')
 if not username:
 return None

 try:
 user = User.objects.get(username=username)
 except User.DoesNotExist:
 raise exceptions.AuthenticationFailed('No such user')

 return (user, None)

Third party packages

The following third party packages are also available.

Django OAuth Toolkit

The Django OAuth Toolkit [https://github.com/evonove/django-oauth-toolkit] package provides OAuth 2.0 support, and works with Python 2.7 and Python 3.3+. The package is maintained by Evonove [https://github.com/evonove/] and uses the excellent OAuthLib [https://github.com/idan/oauthlib]. The package is well documented, and well supported and is currently our recommended package for OAuth 2.0 support.

Installation & configuration

Install using pip.

pip install django-oauth-toolkit

Add the package to your INSTALLED_APPS and modify your REST framework settings.

INSTALLED_APPS = (
 ...
 'oauth2_provider',
)

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'oauth2_provider.ext.rest_framework.OAuth2Authentication',
)
}

For more details see the Django REST framework - Getting started [https://django-oauth-toolkit.readthedocs.org/en/latest/rest-framework/getting_started.html] documentation.

Django REST framework OAuth

The Django REST framework OAuth [http://jpadilla.github.io/django-rest-framework-oauth/] package provides both OAuth1 and OAuth2 support for REST framework.

This package was previously included directly in REST framework but is now supported and maintained as a third party package.

Installation & configuration

Install the package using pip.

pip install djangorestframework-oauth

For details on configuration and usage see the Django REST framework OAuth documentation for authentication [http://jpadilla.github.io/django-rest-framework-oauth/authentication/] and permissions [http://jpadilla.github.io/django-rest-framework-oauth/permissions/].

Digest Authentication

HTTP digest authentication is a widely implemented scheme that was intended to replace HTTP basic authentication, and which provides a simple encrypted authentication mechanism. Juan Riaza [https://github.com/juanriaza] maintains the djangorestframework-digestauth [https://github.com/juanriaza/django-rest-framework-digestauth] package which provides HTTP digest authentication support for REST framework.

Django OAuth2 Consumer

The Django OAuth2 Consumer [https://github.com/Rediker-Software/doac] library from Rediker Software [https://github.com/Rediker-Software] is another package that provides OAuth 2.0 support for REST framework [https://github.com/Rediker-Software/doac/blob/master/docs/integrations.md#]. The package includes token scoping permissions on tokens, which allows finer-grained access to your API.

JSON Web Token Authentication

JSON Web Token is a fairly new standard which can be used for token-based authentication. Unlike the built-in TokenAuthentication scheme, JWT Authentication doesn’t need to use a database to validate a token. Blimp [https://github.com/GetBlimp] maintains the djangorestframework-jwt [https://github.com/GetBlimp/django-rest-framework-jwt] package which provides a JWT Authentication class as well as a mechanism for clients to obtain a JWT given the username and password.

Hawk HTTP Authentication

The HawkREST [http://hawkrest.readthedocs.org/en/latest/] library builds on the Mohawk [http://mohawk.readthedocs.org/en/latest/] library to let you work with Hawk [https://github.com/hueniverse/hawk] signed requests and responses in your API. Hawk [https://github.com/hueniverse/hawk] lets two parties securely communicate with each other using messages signed by a shared key. It is based on HTTP MAC access authentication [http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05] (which was based on parts of OAuth 1.0 [http://oauth.net/core/1.0a]).

HTTP Signature Authentication

HTTP Signature (currently a IETF draft [https://datatracker.ietf.org/doc/draft-cavage-http-signatures/]) provides a way to achieve origin authentication and message integrity for HTTP messages. Similar to Amazon’s HTTP Signature scheme [http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html], used by many of its services, it permits stateless, per-request authentication. Elvio Toccalino [https://github.com/etoccalino/] maintains the djangorestframework-httpsignature [https://github.com/etoccalino/django-rest-framework-httpsignature] package which provides an easy to use HTTP Signature Authentication mechanism.

Djoser

Djoser [https://github.com/sunscrapers/djoser] library provides a set of views to handle basic actions such as registration, login, logout, password reset and account activation. The package works with a custom user model and it uses token based authentication. This is a ready to use REST implementation of Django authentication system.

django-rest-auth

Django-rest-auth [https://github.com/Tivix/django-rest-auth] library provides a set of REST API endpoints for registration, authentication (including social media authentication), password reset, retrieve and update user details, etc. By having these API endpoints, your client apps such as AngularJS, iOS, Android, and others can communicate to your Django backend site independently via REST APIs for user management.

django-rest-framework-social-oauth2

Django-rest-framework-social-oauth2 [https://github.com/PhilipGarnero/django-rest-framework-social-oauth2] library provides an easy way to integrate social plugins (facebook, twitter, google, etc.) to your authentication system and an easy oauth2 setup. With this library, you will be able to authenticate users based on external tokens (e.g. facebook access token), convert these tokens to “in-house” oauth2 tokens and use and generate oauth2 tokens to authenticate your users.

django-rest-knox

Django-rest-knox [https://github.com/James1345/django-rest-knox] library provides models and views to handle token based authentication in a more secure and extensible way than the built-in TokenAuthentication scheme - with Single Page Applications and Mobile clients in mind. It provides per-client tokens, and views to generate them when provided some other authentication (usually basic authentication), to delete the token (providing a server enforced logout) and to delete all tokens (logs out all clients that a user is logged into).

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/views.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: decorators.py
views.py

Class Based Views

Django’s class based views are a welcome departure from the old-style views.

—

 Reinout van Rees [http://reinout.vanrees.org/weblog/2011/08/24/class-based-views-usage.html]

REST framework provides an APIView class, which subclasses Django’s View class.

APIView classes are different from regular View classes in the following ways:

		Requests passed to the handler methods will be REST framework’s Request instances, not Django’s HttpRequest instances.

		Handler methods may return REST framework’s Response, instead of Django’s HttpResponse. The view will manage content negotiation and setting the correct renderer on the response.

		Any APIException exceptions will be caught and mediated into appropriate responses.

		Incoming requests will be authenticated and appropriate permission and/or throttle checks will be run before dispatching the request to the handler method.

Using the APIView class is pretty much the same as using a regular View class, as usual, the incoming request is dispatched to an appropriate handler method such as .get() or .post(). Additionally, a number of attributes may be set on the class that control various aspects of the API policy.

For example:

from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import authentication, permissions

class ListUsers(APIView):
 """
 View to list all users in the system.

 * Requires token authentication.
 * Only admin users are able to access this view.
 """
 authentication_classes = (authentication.TokenAuthentication,)
 permission_classes = (permissions.IsAdminUser,)

 def get(self, request, format=None):
 """
 Return a list of all users.
 """
 usernames = [user.username for user in User.objects.all()]
 return Response(usernames)

API policy attributes

The following attributes control the pluggable aspects of API views.

.renderer_classes

.parser_classes

.authentication_classes

.throttle_classes

.permission_classes

.content_negotiation_class

API policy instantiation methods

The following methods are used by REST framework to instantiate the various pluggable API policies. You won’t typically need to override these methods.

.get_renderers(self)

.get_parsers(self)

.get_authenticators(self)

.get_throttles(self)

.get_permissions(self)

.get_content_negotiator(self)

API policy implementation methods

The following methods are called before dispatching to the handler method.

.check_permissions(self, request)

.check_throttles(self, request)

.perform_content_negotiation(self, request, force=False)

Dispatch methods

The following methods are called directly by the view’s .dispatch() method.
These perform any actions that need to occur before or after calling the handler methods such as .get(), .post(), put(), patch() and .delete().

.initial(self, request, *args, **kwargs)

Performs any actions that need to occur before the handler method gets called.
This method is used to enforce permissions and throttling, and perform content negotiation.

You won’t typically need to override this method.

.handle_exception(self, exc)

Any exception thrown by the handler method will be passed to this method, which either returns a Response instance, or re-raises the exception.

The default implementation handles any subclass of rest_framework.exceptions.APIException, as well as Django’s Http404 and PermissionDenied exceptions, and returns an appropriate error response.

If you need to customize the error responses your API returns you should subclass this method.

.initialize_request(self, request, *args, **kwargs)

Ensures that the request object that is passed to the handler method is an instance of Request, rather than the usual Django HttpRequest.

You won’t typically need to override this method.

.finalize_response(self, request, response, *args, **kwargs)

Ensures that any Response object returned from the handler method will be rendered into the correct content type, as determined by the content negotiation.

You won’t typically need to override this method.

Function Based Views

Saying [that Class based views] is always the superior solution is a mistake.

—

 Nick Coghlan [http://www.boredomandlaziness.org/2012/05/djangos-cbvs-are-not-mistake-but.html]

REST framework also allows you to work with regular function based views. It provides a set of simple decorators that wrap your function based views to ensure they receive an instance of Request (rather than the usual Django HttpRequest) and allows them to return a Response (instead of a Django HttpResponse), and allow you to configure how the request is processed.

@api_view()

Signature: @api_view(http_method_names=['GET'])

The core of this functionality is the api_view decorator, which takes a list of HTTP methods that your view should respond to. For example, this is how you would write a very simple view that just manually returns some data:

from rest_framework.decorators import api_view

@api_view()
def hello_world(request):
 return Response({"message": "Hello, world!"})

This view will use the default renderers, parsers, authentication classes etc specified in the settings.

By default only GET methods will be accepted. Other methods will respond with “405 Method Not Allowed”. To alter this behavior, specify which methods the view allows, like so:

@api_view(['GET', 'POST'])
def hello_world(request):
 if request.method == 'POST':
 return Response({"message": "Got some data!", "data": request.data})
 return Response({"message": "Hello, world!"})

API policy decorators

To override the default settings, REST framework provides a set of additional decorators which can be added to your views. These must come after (below) the @api_view decorator. For example, to create a view that uses a throttle to ensure it can only be called once per day by a particular user, use the @throttle_classes decorator, passing a list of throttle classes:

from rest_framework.decorators import api_view, throttle_classes
from rest_framework.throttling import UserRateThrottle

class OncePerDayUserThrottle(UserRateThrottle):
 rate = '1/day'

@api_view(['GET'])
@throttle_classes([OncePerDayUserThrottle])
def view(request):
 return Response({"message": "Hello for today! See you tomorrow!"})

These decorators correspond to the attributes set on APIView subclasses, described above.

The available decorators are:

		@renderer_classes(...)

		@parser_classes(...)

		@authentication_classes(...)

		@throttle_classes(...)

		@permission_classes(...)

Each of these decorators takes a single argument which must be a list or tuple of classes.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/pagination.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: pagination.py

Pagination

Django provides a few classes that help you manage paginated data – that is, data that’s split across several pages, with “Previous/Next” links.

—

 Django documentation [https://docs.djangoproject.com/en/dev/topics/pagination/]

REST framework includes support for customizable pagination styles. This allows you to modify how large result sets are split into individual pages of data.

The pagination API can support either:

		Pagination links that are provided as part of the content of the response.

		Pagination links that are included in response headers, such as Content-Range or Link.

The built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API.

Pagination is only performed automatically if you’re using the generic views or viewsets. If you’re using a regular APIView, you’ll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the mixins.ListModelMixin and generics.GenericAPIView classes for an example.

Setting the pagination style

The default pagination style may be set globally, using the DEFAULT_PAGINATION_CLASS settings key. For example, to use the built-in limit/offset pagination, you would do:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'
}

You can also set the pagination class on an individual view by using the pagination_class attribute. Typically you’ll want to use the same pagination style throughout your API, although you might want to vary individual aspects of the pagination, such as default or maximum page size, on a per-view basis.

Modifying the pagination style

If you want to modify particular aspects of the pagination style, you’ll want to override one of the pagination classes, and set the attributes that you want to change.

class LargeResultsSetPagination(PageNumberPagination):
 page_size = 1000
 page_size_query_param = 'page_size'
 max_page_size = 10000

class StandardResultsSetPagination(PageNumberPagination):
 page_size = 100
 page_size_query_param = 'page_size'
 max_page_size = 1000

You can then apply your new style to a view using the .pagination_class attribute:

class BillingRecordsView(generics.ListAPIView):
 queryset = Billing.objects.all()
 serializer = BillingRecordsSerializer
 pagination_class = LargeResultsSetPagination

Or apply the style globally, using the DEFAULT_PAGINATION_CLASS settings key. For example:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'apps.core.pagination.StandardResultsSetPagination'
 }

API Reference

PageNumberPagination

This pagination style accepts a single number page number in the request query parameters.

Request:

GET https://api.example.org/accounts/?page=4

Response:

HTTP 200 OK
{
 "count": 1023
 "next": "https://api.example.org/accounts/?page=5",
 "previous": "https://api.example.org/accounts/?page=3",
 "results": [
 …
]
}

Setup

To enable the PageNumberPagination style globally, use the following configuration, modifying the PAGE_SIZE as desired:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',
 'PAGE_SIZE': 100
}

On GenericAPIView subclasses you may also set the pagination_class attribute to select PageNumberPagination on a per-view basis.

Configuration

The PageNumberPagination class includes a number of attributes that may be overridden to modify the pagination style.

To set these attributes you should override the PageNumberPagination class, and then enable your custom pagination class as above.

		page_size - A numeric value indicating the page size. If set, this overrides the PAGE_SIZE setting. Defaults to the same value as the PAGE_SIZE settings key.

		page_query_param - A string value indicating the name of the query parameter to use for the pagination control.

		page_size_query_param - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to None, indicating that the client may not control the requested page size.

		max_page_size - If set, this is a numeric value indicating the maximum allowable requested page size. This attribute is only valid if page_size_query_param is also set.

		last_page_strings - A list or tuple of string values indicating values that may be used with the page_query_param to request the final page in the set. Defaults to ('last',)

		template - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to None to disable HTML pagination controls completely. Defaults to "rest_framework/pagination/numbers.html".

LimitOffsetPagination

This pagination style mirrors the syntax used when looking up multiple database records. The client includes both a “limit” and an
“offset” query parameter. The limit indicates the maximum number of items to return, and is equivalent to the page_size in other styles. The offset indicates the starting position of the query in relation to the complete set of unpaginated items.

Request:

GET https://api.example.org/accounts/?limit=100&offset=400

Response:

HTTP 200 OK
{
 "count": 1023
 "next": "https://api.example.org/accounts/?limit=100&offset=500",
 "previous": "https://api.example.org/accounts/?limit=100&offset=300",
 "results": [
 …
]
}

Setup

To enable the LimitOffsetPagination style globally, use the following configuration:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'
}

Optionally, you may also set a PAGE_SIZE key. If the PAGE_SIZE parameter is also used then the limit query parameter will be optional, and may be omitted by the client.

On GenericAPIView subclasses you may also set the pagination_class attribute to select LimitOffsetPagination on a per-view basis.

Configuration

The LimitOffsetPagination class includes a number of attributes that may be overridden to modify the pagination style.

To set these attributes you should override the LimitOffsetPagination class, and then enable your custom pagination class as above.

		default_limit - A numeric value indicating the limit to use if one is not provided by the client in a query parameter. Defaults to the same value as the PAGE_SIZE settings key.

		limit_query_param - A string value indicating the name of the “limit” query parameter. Defaults to 'limit'.

		offset_query_param - A string value indicating the name of the “offset” query parameter. Defaults to 'offset'.

		max_limit - If set this is a numeric value indicating the maximum allowable limit that may be requested by the client. Defaults to None.

		template - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to None to disable HTML pagination controls completely. Defaults to "rest_framework/pagination/numbers.html".

CursorPagination

The cursor-based pagination presents an opaque “cursor” indicator that the client may use to page through the result set. This pagination style only presents forward and reverse controls, and does not allow the client to navigate to arbitrary positions.

Cursor based pagination requires that there is a unique, unchanging ordering of items in the result set. This ordering might typically be a creation timestamp on the records, as this presents a consistent ordering to paginate against.

Cursor based pagination is more complex than other schemes. It also requires that the result set presents a fixed ordering, and does not allow the client to arbitrarily index into the result set. However it does provide the following benefits:

		Provides a consistent pagination view. When used properly CursorPagination ensures that the client will never see the same item twice when paging through records, even when new items are being inserted by other clients during the pagination process.

		Supports usage with very large datasets. With extremely large datasets pagination using offset-based pagination styles may become inefficient or unusable. Cursor based pagination schemes instead have fixed-time properties, and do not slow down as the dataset size increases.

Details and limitations

Proper use of cursor based pagination requires a little attention to detail. You’ll need to think about what ordering you want the scheme to be applied against. The default is to order by "-created". This assumes that there must be a ‘created’ timestamp field on the model instances, and will present a “timeline” style paginated view, with the most recently added items first.

You can modify the ordering by overriding the 'ordering' attribute on the pagination class, or by using the OrderingFilter filter class together with CursorPagination. When used with OrderingFilter you should strongly consider restricting the fields that the user may order by.

Proper usage of cursor pagination should have an ordering field that satisfies the following:

		Should be an unchanging value, such as a timestamp, slug, or other field that is only set once, on creation.

		Should be unique, or nearly unique. Millisecond precision timestamps are a good example. This implementation of cursor pagination uses a smart “position plus offset” style that allows it to properly support not-strictly-unique values as the ordering.

		Should be a non-nullable value that can be coerced to a string.

		The field should have a database index.

Using an ordering field that does not satisfy these constraints will generally still work, but you’ll be loosing some of the benefits of cursor pagination.

For more technical details on the implementation we use for cursor pagination, the “Building cursors for the Disqus API” [http://cramer.io/2011/03/08/building-cursors-for-the-disqus-api/] blog post gives a good overview of the basic approach.

Setup

To enable the CursorPagination style globally, use the following configuration, modifying the PAGE_SIZE as desired:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.CursorPagination',
 'PAGE_SIZE': 100
}

On GenericAPIView subclasses you may also set the pagination_class attribute to select CursorPagination on a per-view basis.

Configuration

The CursorPagination class includes a number of attributes that may be overridden to modify the pagination style.

To set these attributes you should override the CursorPagination class, and then enable your custom pagination class as above.

		page_size = A numeric value indicating the page size. If set, this overrides the PAGE_SIZE setting. Defaults to the same value as the PAGE_SIZE settings key.

		cursor_query_param = A string value indicating the name of the “cursor” query parameter. Defaults to 'cursor'.

		ordering = This should be a string, or list of strings, indicating the field against which the cursor based pagination will be applied. For example: ordering = 'slug'. Defaults to -created. This value may also be overridden by using OrderingFilter on the view.

		template = The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to None to disable HTML pagination controls completely. Defaults to "rest_framework/pagination/previous_and_next.html".

Custom pagination styles

To create a custom pagination serializer class you should subclass pagination.BasePagination and override the paginate_queryset(self, queryset, request, view=None) and get_paginated_response(self, data) methods:

		The paginate_queryset method is passed the initial queryset and should return an iterable object that contains only the data in the requested page.

		The get_paginated_response method is passed the serialized page data and should return a Response instance.

Note that the paginate_queryset method may set state on the pagination instance, that may later be used by the get_paginated_response method.

Example

Suppose we want to replace the default pagination output style with a modified format that includes the next and previous links under in a nested ‘links’ key. We could specify a custom pagination class like so:

class CustomPagination(pagination.PageNumberPagination):
 def get_paginated_response(self, data):
 return Response({
 'links': {
 'next': self.get_next_link(),
 'previous': self.get_previous_link()
 },
 'count': self.page.paginator.count,
 'results': data
 })

We’d then need to setup the custom class in our configuration:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.CustomPagination',
 'PAGE_SIZE': 100
}

Note that if you care about how the ordering of keys is displayed in responses in the browsable API you might choose to use an OrderedDict when constructing the body of paginated responses, but this is optional.

Header based pagination

Let’s modify the built-in PageNumberPagination style, so that instead of include the pagination links in the body of the response, we’ll instead include a Link header, in a similar style to the GitHub API [https://developer.github.com/guides/traversing-with-pagination/].

class LinkHeaderPagination(pagination.PageNumberPagination):
 def get_paginated_response(self, data):
 next_url = self.get_next_link()
 previous_url = self.get_previous_link()

 if next_url is not None and previous_url is not None:
 link = '<{next_url}>; rel="next", <{previous_url}>; rel="prev"'
 elif next_url is not None:
 link = '<{next_url}>; rel="next"'
 elif previous_url is not None:
 link = '<{previous_url}>; rel="prev"'
 else:
 link = ''

 link = link.format(next_url=next_url, previous_url=previous_url)
 headers = {'Link': link} if link else {}

 return Response(data, headers=headers)

Using your custom pagination class

To have your custom pagination class be used by default, use the DEFAULT_PAGINATION_CLASS setting:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.LinkHeaderPagination',
 'PAGE_SIZE': 100
}

API responses for list endpoints will now include a Link header, instead of including the pagination links as part of the body of the response, for example:

[image: Link Header]

A custom pagination style, using the ‘Link’ header’

HTML pagination controls

By default using the pagination classes will cause HTML pagination controls to be displayed in the browsable API. There are two built-in display styles. The PageNumberPagination and LimitOffsetPagination classes display a list of page numbers with previous and next controls. The CursorPagination class displays a simpler style that only displays a previous and next control.

Customizing the controls

You can override the templates that render the HTML pagination controls. The two built-in styles are:

		rest_framework/pagination/numbers.html

		rest_framework/pagination/previous_and_next.html

Providing a template with either of these paths in a global template directory will override the default rendering for the relevant pagination classes.

Alternatively you can disable HTML pagination controls completely by subclassing on of the existing classes, setting template = None as an attribute on the class. You’ll then need to configure your DEFAULT_PAGINATION_CLASS settings key to use your custom class as the default pagination style.

Low-level API

The low-level API for determining if a pagination class should display the controls or not is exposed as a display_page_controls attribute on the pagination instance. Custom pagination classes should be set to True in the paginate_queryset method if they require the HTML pagination controls to be displayed.

The .to_html() and .get_html_context() methods may also be overridden in a custom pagination class in order to further customize how the controls are rendered.

Third party packages

The following third party packages are also available.

DRF-extensions

The DRF-extensions package [http://chibisov.github.io/drf-extensions/docs/] includes a PaginateByMaxMixin mixin class [http://chibisov.github.io/drf-extensions/docs/#paginatebymaxmixin] that allows your API clients to specify ?page_size=max to obtain the maximum allowed page size.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/filtering.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: filters.py

Filtering

The root QuerySet provided by the Manager describes all objects in the database table. Usually, though, you’ll need to select only a subset of the complete set of objects.

—

 Django documentation [https://docs.djangoproject.com/en/dev/topics/db/queries/#retrieving-specific-objects-with-filters]

The default behavior of REST framework’s generic list views is to return the entire queryset for a model manager. Often you will want your API to restrict the items that are returned by the queryset.

The simplest way to filter the queryset of any view that subclasses GenericAPIView is to override the .get_queryset() method.

Overriding this method allows you to customize the queryset returned by the view in a number of different ways.

Filtering against the current user

You might want to filter the queryset to ensure that only results relevant to the currently authenticated user making the request are returned.

You can do so by filtering based on the value of request.user.

For example:

from myapp.models import Purchase
from myapp.serializers import PurchaseSerializer
from rest_framework import generics

class PurchaseList(generics.ListAPIView):
 serializer_class = PurchaseSerializer

 def get_queryset(self):
 """
 This view should return a list of all the purchases
 for the currently authenticated user.
 """
 user = self.request.user
 return Purchase.objects.filter(purchaser=user)

Filtering against the URL

Another style of filtering might involve restricting the queryset based on some part of the URL.

For example if your URL config contained an entry like this:

url('^purchases/(?P<username>.+)/$', PurchaseList.as_view()),

You could then write a view that returned a purchase queryset filtered by the username portion of the URL:

class PurchaseList(generics.ListAPIView):
 serializer_class = PurchaseSerializer

 def get_queryset(self):
 """
 This view should return a list of all the purchases for
 the user as determined by the username portion of the URL.
 """
 username = self.kwargs['username']
 return Purchase.objects.filter(purchaser__username=username)

Filtering against query parameters

A final example of filtering the initial queryset would be to determine the initial queryset based on query parameters in the url.

We can override .get_queryset() to deal with URLs such as http://example.com/api/purchases?username=denvercoder9, and filter the queryset only if the username parameter is included in the URL:

class PurchaseList(generics.ListAPIView):
 serializer_class = PurchaseSerializer

 def get_queryset(self):
 """
 Optionally restricts the returned purchases to a given user,
 by filtering against a `username` query parameter in the URL.
 """
 queryset = Purchase.objects.all()
 username = self.request.query_params.get('username', None)
 if username is not None:
 queryset = queryset.filter(purchaser__username=username)
 return queryset

Generic Filtering

As well as being able to override the default queryset, REST framework also includes support for generic filtering backends that allow you to easily construct complex searches and filters.

Generic filters can also present themselves as HTML controls in the browsable API and admin API.

[image: Filter Example]

Setting filter backends

The default filter backends may be set globally, using the DEFAULT_FILTER_BACKENDS setting. For example.

REST_FRAMEWORK = {
 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',)
}

You can also set the filter backends on a per-view, or per-viewset basis,
using the GenericAPIView class based views.

from django.contrib.auth.models import User
from myapp.serializers import UserSerializer
from rest_framework import filters
from rest_framework import generics

class UserListView(generics.ListAPIView):
 queryset = User.objects.all()
 serializer = UserSerializer
 filter_backends = (filters.DjangoFilterBackend,)

Filtering and object lookups

Note that if a filter backend is configured for a view, then as well as being used to filter list views, it will also be used to filter the querysets used for returning a single object.

For instance, given the previous example, and a product with an id of 4675, the following URL would either return the corresponding object, or return a 404 response, depending on if the filtering conditions were met by the given product instance:

http://example.com/api/products/4675/?category=clothing&max_price=10.00

Overriding the initial queryset

Note that you can use both an overridden .get_queryset() and generic filtering together, and everything will work as expected. For example, if Product had a many-to-many relationship with User, named purchase, you might want to write a view like this:

class PurchasedProductsList(generics.ListAPIView):
 """
 Return a list of all the products that the authenticated
 user has ever purchased, with optional filtering.
 """
 model = Product
 serializer_class = ProductSerializer
 filter_class = ProductFilter

 def get_queryset(self):
 user = self.request.user
 return user.purchase_set.all()

API Guide

DjangoFilterBackend

The DjangoFilterBackend class supports highly customizable field filtering, using the django-filter package [https://github.com/alex/django-filter].

To use REST framework’s DjangoFilterBackend, first install django-filter.

pip install django-filter

If you are using the browsable API or admin API you may also want to install crispy-forms, which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML.

pip install django-crispy-forms

With crispy forms installed, the browsable API will present a filtering control for DjangoFilterBackend, like so:

[image: Django Filter]

Specifying filter fields

If all you need is simple equality-based filtering, you can set a filter_fields attribute on the view, or viewset, listing the set of fields you wish to filter against.

class ProductList(generics.ListAPIView):
 queryset = Product.objects.all()
 serializer_class = ProductSerializer
 filter_backends = (filters.DjangoFilterBackend,)
 filter_fields = ('category', 'in_stock')

This will automatically create a FilterSet class for the given fields, and will allow you to make requests such as:

http://example.com/api/products?category=clothing&in_stock=True

Specifying a FilterSet

For more advanced filtering requirements you can specify a FilterSet class that should be used by the view. For example:

import django_filters
from myapp.models import Product
from myapp.serializers import ProductSerializer
from rest_framework import filters
from rest_framework import generics

class ProductFilter(django_filters.FilterSet):
 min_price = django_filters.NumberFilter(name="price", lookup_type='gte')
 max_price = django_filters.NumberFilter(name="price", lookup_type='lte')
 class Meta:
 model = Product
 fields = ['category', 'in_stock', 'min_price', 'max_price']

class ProductList(generics.ListAPIView):
 queryset = Product.objects.all()
 serializer_class = ProductSerializer
 filter_backends = (filters.DjangoFilterBackend,)
 filter_class = ProductFilter

Which will allow you to make requests such as:

http://example.com/api/products?category=clothing&max_price=10.00

You can also span relationships using django-filter, let’s assume that each
product has foreign key to Manufacturer model, so we create filter that
filters using Manufacturer name. For example:

import django_filters
from myapp.models import Product
from myapp.serializers import ProductSerializer
from rest_framework import generics

class ProductFilter(django_filters.FilterSet):
 class Meta:
 model = Product
 fields = ['category', 'in_stock', 'manufacturer__name']

This enables us to make queries like:

http://example.com/api/products?manufacturer__name=foo

This is nice, but it exposes the Django’s double underscore convention as part of the API. If you instead want to explicitly name the filter argument you can instead explicitly include it on the FilterSet class:

import django_filters
from myapp.models import Product
from myapp.serializers import ProductSerializer
from rest_framework import generics

class ProductFilter(django_filters.FilterSet):
 manufacturer = django_filters.CharFilter(name="manufacturer__name")

 class Meta:
 model = Product
 fields = ['category', 'in_stock', 'manufacturer']

And now you can execute:

http://example.com/api/products?manufacturer=foo

For more details on using filter sets see the django-filter documentation [https://django-filter.readthedocs.org/en/latest/index.html].

Hints & Tips

		By default filtering is not enabled. If you want to use DjangoFilterBackend remember to make sure it is installed by using the 'DEFAULT_FILTER_BACKENDS' setting.

		When using boolean fields, you should use the values True and False in the URL query parameters, rather than 0, 1, true or false. (The allowed boolean values are currently hardwired in Django’s NullBooleanSelect implementation [https://github.com/django/django/blob/master/django/forms/widgets.py].)

		django-filter supports filtering across relationships, using Django’s double-underscore syntax.

		For Django 1.3 support, make sure to install django-filter version 0.5.4, as later versions drop support for 1.3.

SearchFilter

The SearchFilter class supports simple single query parameter based searching, and is based on the Django admin’s search functionality [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_fields].

When in use, the browsable API will include a SearchFilter control:

[image: Search Filter]

The SearchFilter class will only be applied if the view has a search_fields attribute set. The search_fields attribute should be a list of names of text type fields on the model, such as CharField or TextField.

class UserListView(generics.ListAPIView):
 queryset = User.objects.all()
 serializer = UserSerializer
 filter_backends = (filters.SearchFilter,)
 search_fields = ('username', 'email')

This will allow the client to filter the items in the list by making queries such as:

http://example.com/api/users?search=russell

You can also perform a related lookup on a ForeignKey or ManyToManyField with the lookup API double-underscore notation:

search_fields = ('username', 'email', 'profile__profession')

By default, searches will use case-insensitive partial matches. The search parameter may contain multiple search terms, which should be whitespace and/or comma separated. If multiple search terms are used then objects will be returned in the list only if all the provided terms are matched.

The search behavior may be restricted by prepending various characters to the search_fields.

		‘^’ Starts-with search.

		‘=’ Exact matches.

		‘@’ Full-text search. (Currently only supported Django’s MySQL backend.)

		‘$’ Regex search.

For example:

search_fields = ('=username', '=email')

By default, the search parameter is named 'search‘, but this may be overridden with the SEARCH_PARAM setting.

For more details, see the Django documentation [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_fields].

OrderingFilter

The OrderingFilter class supports simple query parameter controlled ordering of results.

[image: Ordering Filter]

By default, the query parameter is named 'ordering', but this may by overridden with the ORDERING_PARAM setting.

For example, to order users by username:

http://example.com/api/users?ordering=username

The client may also specify reverse orderings by prefixing the field name with ‘-‘, like so:

http://example.com/api/users?ordering=-username

Multiple orderings may also be specified:

http://example.com/api/users?ordering=account,username

Specifying which fields may be ordered against

It’s recommended that you explicitly specify which fields the API should allowing in the ordering filter. You can do this by setting an ordering_fields attribute on the view, like so:

class UserListView(generics.ListAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer
 filter_backends = (filters.OrderingFilter,)
 ordering_fields = ('username', 'email')

This helps prevent unexpected data leakage, such as allowing users to order against a password hash field or other sensitive data.

If you don’t specify an ordering_fields attribute on the view, the filter class will default to allowing the user to filter on any readable fields on the serializer specified by the serializer_class attribute.

If you are confident that the queryset being used by the view doesn’t contain any sensitive data, you can also explicitly specify that a view should allow ordering on any model field or queryset aggregate, by using the special value '__all__'.

class BookingsListView(generics.ListAPIView):
 queryset = Booking.objects.all()
 serializer_class = BookingSerializer
 filter_backends = (filters.OrderingFilter,)
 ordering_fields = '__all__'

Specifying a default ordering

If an ordering attribute is set on the view, this will be used as the default ordering.

Typically you’d instead control this by setting order_by on the initial queryset, but using the ordering parameter on the view allows you to specify the ordering in a way that it can then be passed automatically as context to a rendered template. This makes it possible to automatically render column headers differently if they are being used to order the results.

class UserListView(generics.ListAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer
 filter_backends = (filters.OrderingFilter,)
 ordering_fields = ('username', 'email')
 ordering = ('username',)

The ordering attribute may be either a string or a list/tuple of strings.

DjangoObjectPermissionsFilter

The DjangoObjectPermissionsFilter is intended to be used together with the django-guardian [https://django-guardian.readthedocs.org/] package, with custom 'view' permissions added. The filter will ensure that querysets only returns objects for which the user has the appropriate view permission.

If you’re using DjangoObjectPermissionsFilter, you’ll probably also want to add an appropriate object permissions class, to ensure that users can only operate on instances if they have the appropriate object permissions. The easiest way to do this is to subclass DjangoObjectPermissions and add 'view' permissions to the perms_map attribute.

A complete example using both DjangoObjectPermissionsFilter and DjangoObjectPermissions might look something like this.

permissions.py:

class CustomObjectPermissions(permissions.DjangoObjectPermissions):
 """
 Similar to `DjangoObjectPermissions`, but adding 'view' permissions.
 """
 perms_map = {
 'GET': ['%(app_label)s.view_%(model_name)s'],
 'OPTIONS': ['%(app_label)s.view_%(model_name)s'],
 'HEAD': ['%(app_label)s.view_%(model_name)s'],
 'POST': ['%(app_label)s.add_%(model_name)s'],
 'PUT': ['%(app_label)s.change_%(model_name)s'],
 'PATCH': ['%(app_label)s.change_%(model_name)s'],
 'DELETE': ['%(app_label)s.delete_%(model_name)s'],
 }

views.py:

class EventViewSet(viewsets.ModelViewSet):
 """
 Viewset that only lists events if user has 'view' permissions, and only
 allows operations on individual events if user has appropriate 'view', 'add',
 'change' or 'delete' permissions.
 """
 queryset = Event.objects.all()
 serializer = EventSerializer
 filter_backends = (filters.DjangoObjectPermissionsFilter,)
 permission_classes = (myapp.permissions.CustomObjectPermissions,)

For more information on adding 'view' permissions for models, see the relevant section [https://django-guardian.readthedocs.org/en/latest/userguide/assign.html] of the django-guardian documentation, and this blogpost [http://blog.nyaruka.com/adding-a-view-permission-to-django-models].

Custom generic filtering

You can also provide your own generic filtering backend, or write an installable app for other developers to use.

To do so override BaseFilterBackend, and override the .filter_queryset(self, request, queryset, view) method. The method should return a new, filtered queryset.

As well as allowing clients to perform searches and filtering, generic filter backends can be useful for restricting which objects should be visible to any given request or user.

Example

For example, you might need to restrict users to only being able to see objects they created.

class IsOwnerFilterBackend(filters.BaseFilterBackend):
 """
 Filter that only allows users to see their own objects.
 """
 def filter_queryset(self, request, queryset, view):
 return queryset.filter(owner=request.user)

We could achieve the same behavior by overriding get_queryset() on the views, but using a filter backend allows you to more easily add this restriction to multiple views, or to apply it across the entire API.

Customizing the interface

Generic filters may also present an interface in the browsable API. To do so you should implement a to_html() method which returns a rendered HTML representation of the filter. This method should have the following signature:

to_html(self, request, queryset, view)

The method should return a rendered HTML string.

Third party packages

The following third party packages provide additional filter implementations.

Django REST framework filters package

The django-rest-framework-filters package [https://github.com/philipn/django-rest-framework-filters] works together with the DjangoFilterBackend class, and allows you to easily create filters across relationships, or create multiple filter lookup types for a given field.

Django REST framework full word search filter

The djangorestframework-word-filter [https://github.com/trollknurr/django-rest-framework-word-search-filter] developed as alternative to filters.SearchFilter which will search full word in text, or exact match.

Django URL Filter

django-url-filter [https://github.com/miki725/django-url-filter] provides a safe way to filter data via human-friendly URLs. It works very similar to DRF serializers and fields in a sense that they can be nested except they are called filtersets and filters. That provides easy way to filter related data. Also this library is generic-purpose so it can be used to filter other sources of data and not only Django QuerySets.

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/renderers.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: renderers.py

Renderers

Before a TemplateResponse instance can be returned to the client, it must be rendered. The rendering process takes the intermediate representation of template and context, and turns it into the final byte stream that can be served to the client.

—

 Django documentation [https://docs.djangoproject.com/en/dev/ref/template-response/#the-rendering-process]

REST framework includes a number of built in Renderer classes, that allow you to return responses with various media types. There is also support for defining your own custom renderers, which gives you the flexibility to design your own media types.

How the renderer is determined

The set of valid renderers for a view is always defined as a list of classes. When a view is entered REST framework will perform content negotiation on the incoming request, and determine the most appropriate renderer to satisfy the request.

The basic process of content negotiation involves examining the request’s Accept header, to determine which media types it expects in the response. Optionally, format suffixes on the URL may be used to explicitly request a particular representation. For example the URL http://example.com/api/users_count.json might be an endpoint that always returns JSON data.

For more information see the documentation on content negotiation.

Setting the renderers

The default set of renderers may be set globally, using the DEFAULT_RENDERER_CLASSES setting. For example, the following settings would use JSON as the main media type and also include the self describing API.

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer',
)
}

You can also set the renderers used for an individual view, or viewset,
using the APIView class based views.

from django.contrib.auth.models import User
from rest_framework.renderers import JSONRenderer
from rest_framework.response import Response
from rest_framework.views import APIView

class UserCountView(APIView):
 """
 A view that returns the count of active users in JSON.
 """
 renderer_classes = (JSONRenderer,)

 def get(self, request, format=None):
 user_count = User.objects.filter(active=True).count()
 content = {'user_count': user_count}
 return Response(content)

Or, if you’re using the @api_view decorator with function based views.

@api_view(['GET'])
@renderer_classes((JSONRenderer,))
def user_count_view(request, format=None):
 """
 A view that returns the count of active users in JSON.
 """
 user_count = User.objects.filter(active=True).count()
 content = {'user_count': user_count}
 return Response(content)

Ordering of renderer classes

It’s important when specifying the renderer classes for your API to think about what priority you want to assign to each media type. If a client underspecifies the representations it can accept, such as sending an Accept: */* header, or not including an Accept header at all, then REST framework will select the first renderer in the list to use for the response.

For example if your API serves JSON responses and the HTML browsable API, you might want to make JSONRenderer your default renderer, in order to send JSON responses to clients that do not specify an Accept header.

If your API includes views that can serve both regular webpages and API responses depending on the request, then you might consider making TemplateHTMLRenderer your default renderer, in order to play nicely with older browsers that send broken accept headers [http://www.gethifi.com/blog/browser-rest-http-accept-headers].

API Reference

JSONRenderer

Renders the request data into JSON, using utf-8 encoding.

Note that the default style is to include unicode characters, and render the response using a compact style with no unnecessary whitespace:

{"unicode black star":"★","value":999}

The client may additionally include an 'indent' media type parameter, in which case the returned JSON will be indented. For example Accept: application/json; indent=4.

{
 "unicode black star": "★",
 "value": 999
}

The default JSON encoding style can be altered using the UNICODE_JSON and COMPACT_JSON settings keys.

.media_type: application/json

.format: '.json'

.charset: None

TemplateHTMLRenderer

Renders data to HTML, using Django’s standard template rendering.
Unlike other renderers, the data passed to the Response does not need to be serialized. Also, unlike other renderers, you may want to include a template_name argument when creating the Response.

The TemplateHTMLRenderer will create a RequestContext, using the response.data as the context dict, and determine a template name to use to render the context.

The template name is determined by (in order of preference):

		An explicit template_name argument passed to the response.

		An explicit .template_name attribute set on this class.

		The return result of calling view.get_template_names().

An example of a view that uses TemplateHTMLRenderer:

class UserDetail(generics.RetrieveAPIView):
 """
 A view that returns a templated HTML representation of a given user.
 """
 queryset = User.objects.all()
 renderer_classes = (TemplateHTMLRenderer,)

 def get(self, request, *args, **kwargs):
 self.object = self.get_object()
 return Response({'user': self.object}, template_name='user_detail.html')

You can use TemplateHTMLRenderer either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.

If you’re building websites that use TemplateHTMLRenderer along with other renderer classes, you should consider listing TemplateHTMLRenderer as the first class in the renderer_classes list, so that it will be prioritised first even for browsers that send poorly formed ACCEPT: headers.

.media_type: text/html

.format: '.html'

.charset: utf-8

See also: StaticHTMLRenderer

StaticHTMLRenderer

A simple renderer that simply returns pre-rendered HTML. Unlike other renderers, the data passed to the response object should be a string representing the content to be returned.

An example of a view that uses StaticHTMLRenderer:

@api_view(('GET',))
@renderer_classes((StaticHTMLRenderer,))
def simple_html_view(request):
 data = '<html><body><h1>Hello, world</h1></body></html>'
 return Response(data)

You can use StaticHTMLRenderer either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.

.media_type: text/html

.format: '.html'

.charset: utf-8

See also: TemplateHTMLRenderer

BrowsableAPIRenderer

Renders data into HTML for the Browsable API:

[image: The BrowsableAPIRenderer]

This renderer will determine which other renderer would have been given highest priority, and use that to display an API style response within the HTML page.

.media_type: text/html

.format: '.api'

.charset: utf-8

.template: 'rest_framework/api.html'

Customizing BrowsableAPIRenderer

By default the response content will be rendered with the highest priority renderer apart from BrowsableAPIRenderer. If you need to customize this behavior, for example to use HTML as the default return format, but use JSON in the browsable API, you can do so by overriding the get_default_renderer() method. For example:

class CustomBrowsableAPIRenderer(BrowsableAPIRenderer):
 def get_default_renderer(self, view):
 return JSONRenderer()

AdminRenderer

Renders data into HTML for an admin-like display:

[image: The AdminRender view]

This renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data.

Note that views that have nested or list serializers for their input won’t work well with the AdminRenderer, as the HTML forms are unable to properly support them.

.media_type: text/html

.format: '.admin'

.charset: utf-8

.template: 'rest_framework/admin.html'

HTMLFormRenderer

Renders data returned by a serializer into an HTML form. The output of this renderer does not include the enclosing <form> tags, a hidden CSRF input or any submit buttons.

This renderer is not intended to be used directly, but can instead be used in templates by passing a serializer instance to the render_form template tag.

{% load rest_framework %}

<form action="/submit-report/" method="post">
 {% csrf_token %}
 {% render_form serializer %}
 <input type="submit" value="Save" />
</form>

For more information see the HTML & Forms documentation.

.media_type: text/html

.format: '.form'

.charset: utf-8

.template: 'rest_framework/horizontal/form.html'

MultiPartRenderer

This renderer is used for rendering HTML multipart form data. It is not suitable as a response renderer, but is instead used for creating test requests, using REST framework’s test client and test request factory.

.media_type: multipart/form-data; boundary=BoUnDaRyStRiNg

.format: '.multipart'

.charset: utf-8

Custom renderers

To implement a custom renderer, you should override BaseRenderer, set the .media_type and .format properties, and implement the .render(self, data, media_type=None, renderer_context=None) method.

The method should return a bytestring, which will be used as the body of the HTTP response.

The arguments passed to the .render() method are:

data

The request data, as set by the Response() instantiation.

media_type=None

Optional. If provided, this is the accepted media type, as determined by the content negotiation stage.

Depending on the client’s Accept: header, this may be more specific than the renderer’s media_type attribute, and may include media type parameters. For example "application/json; nested=true".

renderer_context=None

Optional. If provided, this is a dictionary of contextual information provided by the view.

By default this will include the following keys: view, request, response, args, kwargs.

Example

The following is an example plaintext renderer that will return a response with the data parameter as the content of the response.

from django.utils.encoding import smart_unicode
from rest_framework import renderers

class PlainTextRenderer(renderers.BaseRenderer):
 media_type = 'text/plain'
 format = 'txt'

 def render(self, data, media_type=None, renderer_context=None):
 return data.encode(self.charset)

Setting the character set

By default renderer classes are assumed to be using the UTF-8 encoding. To use a different encoding, set the charset attribute on the renderer.

class PlainTextRenderer(renderers.BaseRenderer):
 media_type = 'text/plain'
 format = 'txt'
 charset = 'iso-8859-1'

 def render(self, data, media_type=None, renderer_context=None):
 return data.encode(self.charset)

Note that if a renderer class returns a unicode string, then the response content will be coerced into a bytestring by the Response class, with the charset attribute set on the renderer used to determine the encoding.

If the renderer returns a bytestring representing raw binary content, you should set a charset value of None, which will ensure the Content-Type header of the response will not have a charset value set.

In some cases you may also want to set the render_style attribute to 'binary'. Doing so will also ensure that the browsable API will not attempt to display the binary content as a string.

class JPEGRenderer(renderers.BaseRenderer):
 media_type = 'image/jpeg'
 format = 'jpg'
 charset = None
 render_style = 'binary'

 def render(self, data, media_type=None, renderer_context=None):
 return data

Advanced renderer usage

You can do some pretty flexible things using REST framework’s renderers. Some examples...

		Provide either flat or nested representations from the same endpoint, depending on the requested media type.

		Serve both regular HTML webpages, and JSON based API responses from the same endpoints.

		Specify multiple types of HTML representation for API clients to use.

		Underspecify a renderer’s media type, such as using media_type = 'image/*', and use the Accept header to vary the encoding of the response.

Varying behaviour by media type

In some cases you might want your view to use different serialization styles depending on the accepted media type. If you need to do this you can access request.accepted_renderer to determine the negotiated renderer that will be used for the response.

For example:

@api_view(('GET',))
@renderer_classes((TemplateHTMLRenderer, JSONRenderer))
def list_users(request):
 """
 A view that can return JSON or HTML representations
 of the users in the system.
 """
 queryset = Users.objects.filter(active=True)

 if request.accepted_renderer.format == 'html':
 # TemplateHTMLRenderer takes a context dict,
 # and additionally requires a 'template_name'.
 # It does not require serialization.
 data = {'users': queryset}
 return Response(data, template_name='list_users.html')

 # JSONRenderer requires serialized data as normal.
 serializer = UserSerializer(instance=queryset)
 data = serializer.data
 return Response(data)

Underspecifying the media type

In some cases you might want a renderer to serve a range of media types.
In this case you can underspecify the media types it should respond to, by using a media_type value such as image/*, or */*.

If you underspecify the renderer’s media type, you should make sure to specify the media type explicitly when you return the response, using the content_type attribute. For example:

return Response(data, content_type='image/png')

Designing your media types

For the purposes of many Web APIs, simple JSON responses with hyperlinked relations may be sufficient. If you want to fully embrace RESTful design and HATEOAS [http://timelessrepo.com/haters-gonna-hateoas] you’ll need to consider the design and usage of your media types in more detail.

In the words of Roy Fielding [http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven], “A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types.”.

For good examples of custom media types, see GitHub’s use of a custom application/vnd.github+json [http://developer.github.com/v3/media/] media type, and Mike Amundsen’s IANA approved application/vnd.collection+json [http://www.amundsen.com/media-types/collection/] JSON-based hypermedia.

HTML error views

Typically a renderer will behave the same regardless of if it’s dealing with a regular response, or with a response caused by an exception being raised, such as an Http404 or PermissionDenied exception, or a subclass of APIException.

If you’re using either the TemplateHTMLRenderer or the StaticHTMLRenderer and an exception is raised, the behavior is slightly different, and mirrors Django’s default handling of error views [https://docs.djangoproject.com/en/dev/topics/http/views/#customizing-error-views].

Exceptions raised and handled by an HTML renderer will attempt to render using one of the following methods, by order of precedence.

		Load and render a template named {status_code}.html.

		Load and render a template named api_exception.html.

		Render the HTTP status code and text, for example “404 Not Found”.

Templates will render with a RequestContext which includes the status_code and details keys.

Note: If DEBUG=True, Django’s standard traceback error page will be displayed instead of rendering the HTTP status code and text.

Third party packages

The following third party packages are also available.

YAML

REST framework YAML [http://jpadilla.github.io/django-rest-framework-yaml/] provides YAML [http://www.yaml.org/] parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.

Installation & configuration

Install using pip.

$ pip install djangorestframework-yaml

Modify your REST framework settings.

REST_FRAMEWORK = {
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework_yaml.parsers.YAMLParser',
),
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework_yaml.renderers.YAMLRenderer',
),
}

XML

REST Framework XML [http://jpadilla.github.io/django-rest-framework-xml/] provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.

Installation & configuration

Install using pip.

$ pip install djangorestframework-xml

Modify your REST framework settings.

REST_FRAMEWORK = {
 'DEFAULT_PARSER_CLASSES': (
 'rest_framework_xml.parsers.XMLParser',
),
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework_xml.renderers.XMLRenderer',
),
}

JSONP

REST framework JSONP [http://jpadilla.github.io/django-rest-framework-jsonp/] provides JSONP rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.

Warning: If you require cross-domain AJAX requests, you should generally be using the more modern approach of CORS [http://www.w3.org/TR/cors/] as an alternative to JSONP. See the CORS documentation [http://www.django-rest-framework.org/topics/ajax-csrf-cors/] for more details.

The jsonp approach is essentially a browser hack, and is only appropriate for globally readable API endpoints [http://stackoverflow.com/questions/613962/is-jsonp-safe-to-use], where GET requests are unauthenticated and do not require any user permissions.

Installation & configuration

Install using pip.

$ pip install djangorestframework-jsonp

Modify your REST framework settings.

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': (
 'rest_framework_jsonp.renderers.JSONPRenderer',
),
}

MessagePack

MessagePack [http://msgpack.org/] is a fast, efficient binary serialization format. Juan Riaza [https://github.com/juanriaza] maintains the djangorestframework-msgpack [https://github.com/juanriaza/django-rest-framework-msgpack] package which provides MessagePack renderer and parser support for REST framework.

CSV

Comma-separated values are a plain-text tabular data format, that can be easily imported into spreadsheet applications. Mjumbe Poe [https://github.com/mjumbewu] maintains the djangorestframework-csv [https://github.com/mjumbewu/django-rest-framework-csv] package which provides CSV renderer support for REST framework.

UltraJSON

UltraJSON [https://github.com/esnme/ultrajson] is an optimized C JSON encoder which can give significantly faster JSON rendering. Jacob Haslehurst [https://github.com/hzy] maintains the drf-ujson-renderer [https://github.com/gizmag/drf-ujson-renderer] package which implements JSON rendering using the UJSON package.

CamelCase JSON

djangorestframework-camel-case [https://github.com/vbabiy/djangorestframework-camel-case] provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by Vitaly Babiy [https://github.com/vbabiy].

Pandas (CSV, Excel, PNG)

Django REST Pandas [https://github.com/wq/django-rest-pandas] provides a serializer and renderers that support additional data processing and output via the Pandas [http://pandas.pydata.org/] DataFrame API. Django REST Pandas includes renderers for Pandas-style CSV files, Excel workbooks (both .xls and .xlsx), and a number of other formats [https://github.com/wq/django-rest-pandas#supported-formats]. It is maintained by S. Andrew Sheppard [https://github.com/sheppard] as part of the wq Project [https://github.com/wq].

 © Copyright .
 Created using Sphinx 1.3.1.

api-guide/generic-views.html

 Navigation

 		
 index

 		django-rest-framework 2 stable documentation »

 source: mixins.py
generics.py

Generic views

Django’s generic views... were developed as a shortcut for common usage patterns... They take certain common idioms and patterns found in view development and abstract them so that you can quickly write common views of data without having to repeat yourself.

—

 Django Documentation [https://docs.djangoproject.com/en/dev/ref/class-based-views/#base-vs-generic-views]

One of the key benefits of class based views is the way they allow you to compose bits of reusable behavior. REST framework takes advantage of this by providing a number of pre-built views that provide for commonly used patterns.

The generic views provided by REST framework allow you to quickly build API views that map closely to your database models.

If the generic views don’t suit the needs of your API, you can drop down to using the regular APIView class, or reuse the mixins and base classes used by the generic views to compose your own set of reusable generic views.

Examples

Typically when using the generic views, you’ll override the view, and set several class attributes.

from django.contrib.auth.models import User
from myapp.serializers import UserSerializer
from rest_framework import generics
from rest_framework.permissions import IsAdminUser

class UserList(generics.ListCreateAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer
 permission_classes = (IsAdminUser,)
 paginate_by = 100

For more complex cases you might also want to override various methods on the view class. For example.

class UserList(generics.ListCreateAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer
 permission_classes = (IsAdminUser,)

 def get_paginate_by(self):
 """
 Use smaller pagination for HTML representations.
 """
 if self.request.accepted_renderer.format == 'html':
 return 20
 return 100

 def list(self, request):
 # Note the use of `get_queryset()` instead of `self.queryset`
 queryset = self.get_queryset()
 serializer = UserSerializer(queryset, many=True)
 return Response(serializer.data)

For very simple cases you might want to pass through any class attributes using the .as_view() method. For example, your URLconf might include something like the following entry:

url(r'^/users/', ListCreateAPIView.as_view(queryset=User.objects.all(), serializer_class=UserSerializer), name='user-list')

API Reference

GenericAPIView

This class extends REST framework’s APIView class, adding commonly required behavior for standard list and detail views.

Each of the concrete generic views provided is built by combining GenericAPIView, with one or more mixin classes.

Attributes

Basic settings:

The following attributes control the basic view behavior.

		queryset - The queryset that should be used for returning objects from this view. Typically, you must either set this attribute, or override the get_queryset() method. If you are overriding a view method, it is important that you call get_queryset() instead of accessing this property directly, as queryset will get evaluated once, and those results will be cached for all subsequent requests.

		serializer_class - The serializer class that should be used for validating and deserializing input, and for serializing output. Typically, you must either set this attribute, or override the get_serializer_class() method.

		lookup_field - The model field that should be used to for performing object lookup of individual model instances. Defaults to 'pk'. Note that when using hyperlinked APIs you’ll need to ensure that both the API views and the serializer classes set the lookup fields if you need to use a custom value.

		lookup_url_kwarg - The URL keyword argument that should be used for object lookup. The URL conf should include a keyword argument corresponding to this value. If unset this defaults to using the same value as lookup_field.

Pagination:

The following attributes are used to control pagination when used with list views.

		pagination_class - The pagination class that should be used when paginating list results. Defaults to the same value as the DEFAULT_PAGINATION_CLASS setting, which is 'rest_framework.pagination.PageNumberPagination'.

Note that usage of the paginate_by, paginate_by_param and page_kwarg attributes are now pending deprecation. The pagination_serializer_class attribute and DEFAULT_PAGINATION_SERIALIZER_CLASS setting have been removed completely. Pagination settings should instead be controlled by overriding a pagination class and setting any configuration attributes there. See the pagination documentation for more details.

Filtering:

		filter_backends - A list of filter backend classes that should be used for filtering the queryset. Defaults to the same value as the DEFAULT_FILTER_BACKENDS setting.

Methods

Base methods:

get_queryset(self)

Returns the queryset that should be used for list views, and that should be used as the base for lookups in detail views. Defaults to returning the queryset specified by the queryset attribute.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets evaluated only once, and those results are cached for all subsequent requests.

May be overridden to provide dynamic behavior, such as returning a queryset, that is specific to the user making the request.

For example:

def get_queryset(self):
 user = self.request.user
 return user.accounts.all()

get_object(self)

Returns an object instance that should be used for detail views. Defaults to using the lookup_field parameter to filter the base queryset.

May be overridden to provide more complex behavior, such as object lookups based on more than one URL kwarg.

For example:

def get_object(self):
 queryset = self.get_queryset()
 filter = {}
 for field in self.multiple_lookup_fields:
 filter[field] = self.kwargs[field]

 obj = get_object_or_404(queryset, **filter)
 self.check_object_permissions(self.request, obj)
 return obj

Note that if your API doesn’t include any object level permissions, you may optionally exclude the self.check_object_permissions, and simply return the object from the get_object_or_404 lookup.

filter_queryset(self, queryset)

Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.

For example:

def filter_queryset(self, queryset):
 filter_backends = (CategoryFilter,)

 if 'geo_route' in self.request.query_params:
 filter_backends = (GeoRouteFilter, CategoryFilter)
 elif 'geo_point' in self.request.query_params:
 filter_backends = (GeoPointFilter, CategoryFilter)

 for backend in list(filter_backends):
 queryset = backend().filter_queryset(self.request, queryset, view=self)

 return queryset

get_serializer_class(self)

Returns the class that should be used for the serializer. Defaults to returning the serializer_class attribute.

May be overridden to provide dynamic behavior, such as using different serializers for read and write operations, or providing different serializers to different types of users.

For example:

def get_serializer_class(self):
 if self.request.user.is_staff:
 return FullAccountSerializer
 return BasicAccountSerializer

get_paginate_by(self)

Returns the page size to use with pagination. By default this uses the paginate_by attribute, and may be overridden by the client if the paginate_by_param attribute is set.

You may want to override this method to provide more complex behavior, such as modifying page sizes based on the media type of the response.

For example:

def get_paginate_by(self):
 if self.request.accepted_renderer.format == 'html':
 return 20
 return 100

Save and deletion hooks:

The following methods are provided by the mixin classes, and provide easy overriding of the object save or deletion behavior.

		perform_create(self, serializer) - Called by CreateModelMixin when saving a new object instance.

		perform_update(self, serializer) - Called by UpdateModelMixin when saving an existing object instance.

		perform_destroy(self, instance) - Called by DestroyModelMixin when deleting an object instance.

These hooks are particularly useful for setting attributes that are implicit in the request, but are not part of the request data. For instance, you might set an attribute on the object based on the request user, or based on a URL keyword argument.

def perform_create(self, serializer):
 serializer.save(user=self.request.user)

These override points are also particularly useful for adding behavior that occurs before or after saving an object, such as emailing a confirmation, or logging the update.

def perform_update(self, serializer):
 instance = serializer.save()
 send_email_confirmation(user=self.request.user, modified=instance)

You can also use these hooks to provide additional validation, by raising a ValidationError(). This can be useful if you need some validation logic to apply at the point of database save. For example:

def perform_create(self, serializer):
 queryset = SignupRequest.objects.filter(user=self.request.user)
 if queryset.exists():
 raise ValidationError('You have already signed up')
 serializer.save(user=self.request.user)

Note: These methods replace the old-style version 2.x pre_save, post_save, pre_delete and post_delete methods, which are no longer available.

Other methods:

You won’t typically need to override the following methods, although you might need to call into them if you’re writing custom views using GenericAPIView.

		get_serializer_context(self) - Returns a dictionary containing any extra context that should be supplied to the serializer. Defaults to including 'request', 'view' and 'format' keys.

		get_serializer(self, instance=None, data=None, many=False, partial=False) - Returns a serializer instance.

		get_paginated_response(self, data) - Returns a paginated style Response object.

		paginate_queryset(self, queryset) - Paginate a queryset if required, either returning a page object, or None if pagination is not configured for this view.

		filter_queryset(self, queryset) - Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.

Mixins

The mixin classes provide the actions that are used to provide the basic view behavior. Note that the mixin classes provide action methods rather than defining the handler methods, such as .get() and .post(), directly. This allows for more flexible composition of behavior.

The mixin classes can be imported from rest_framework.mixins.

ListModelMixin

Provides a .list(request, *args, **kwargs) method, that implements listing a queryset.

If the queryset is populated, this returns a 200 OK response, with a serialized representation of the queryset as the body of the response. The response data may optionally be paginated.

CreateModelMixin

Provides a .create(request, *args, **kwargs) method, that implements creating and saving a new model instance.

If an object is created this returns a 201 Created response, with a serialized representation of the object as the body of the response. If the representation contains a key named url, then the Location header of the response will be populated with that value.

If the request data provided for creating the object was invalid, a 400 Bad Request response will be returned, with the error details as the body of the response.

RetrieveModelMixin

Provides a .retrieve(request, *args, **kwargs) method, that implements returning an existing model instance in a response.

If an object can be retrieved this returns a 200 OK response, with a serialized representation of the object as the body of the response. Otherwise it will return a 404 Not Found.

UpdateModelMixin

Provides a .update(request, *args, **kwargs) method, that implements updating and saving an existing model instance.

Also provides a .partial_update(request, *args, **kwargs) method, which is similar to the update method, except that all fields for the update will be optional. This allows support for HTTP PATCH requests.

If an object is updated this returns a 200 OK response, with a serialized representation of the object as the body of the response.

If an object is created, for example when making a DELETE request followed by a PUT request to the same URL, this returns a 201 Created response, with a serialized representation of the object as the body of the response.

If the request data provided for updating the object was invalid, a 400 Bad Request response will be returned, with the error details as the body of the response.

DestroyModelMixin

Provides a .destroy(request, *args, **kwargs) method, that implements deletion of an existing model instance.

If an object is deleted this returns a 204 No Content response, otherwise it will return a 404 Not Found.

Concrete View Classes

The following classes are the concrete generic views. If you’re using generic views this is normally the level you’ll be working at unless you need heavily customized behavior.

The view classes can be imported from rest_framework.generics.

CreateAPIView

Used for create-only endpoints.

Provides a post method handler.

Extends: GenericAPIView, CreateModelMixin

ListAPIView

Used for read-only endpoints to represent a collection of model instances.

Provides a get method handler.

Extends: GenericAPIView, ListModelMixin

RetrieveAPIView

Used for read-only endpoints to represent a single model instance.

Provides a get method handler.

Extends: GenericAPIView, RetrieveModelMixin

DestroyAPIView

Used for delete-only endpoints for a single model instance.

Provides a delete method handler.

Extends: GenericAPIView, DestroyModelMixin

UpdateAPIView

Used for update-only endpoints for a single model instance.

Provides put and patch method handlers.

Extends: GenericAPIView, UpdateModelMixin

ListCreateAPIView

Used for read-write endpoints to represent a collection of model instances.

Provides get and post method handlers.

Extends: GenericAPIView, ListModelMixin, CreateModelMixin

RetrieveUpdateAPIView

Used for read or update endpoints to represent a single model instance.

Provides get, put and patch method handlers.

Extends: GenericAPIView, RetrieveModelMixin, UpdateModelMixin

RetrieveDestroyAPIView

Used for read or delete endpoints to represent a single model instance.

Provides get and delete method handlers.

Extends: GenericAPIView, RetrieveModelMixin, DestroyModelMixin

RetrieveUpdateDestroyAPIView

Used for read-write-delete endpoints to represent a single model instance.

Provides get, put, patch and delete method handlers.

Extends: GenericAPIView, RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin

Customizing the generic views

Often you’ll want to use the existing generic views, but use some slightly customized behavior. If you find yourself reusing some bit of customized behavior in multiple places, you might want to refactor the behavior into a common class that you can then just apply to any view or viewset as needed.

Creating custom mixins

For example, if you need to lookup objects based on multiple fields in the URL conf, you could create a mixin class like the following:

class MultipleFieldLookupMixin(object):
 """
 Apply this mixin to any view or viewset to get multiple field filtering
 based on a `lookup_fields` attribute, instead of the default single field filtering.
 """
 def get_object(self):
 queryset = self.get_queryset() # Get the base queryset
 queryset = self.filter_queryset(queryset) # Apply any filter backends
 filter = {}
 for field in self.lookup_fields:
 filter[field] = self.kwargs[field]
 return get_object_or_404(queryset, **filter) # Lookup the object

You can then simply apply this mixin to a view or viewset anytime you need to apply the custom behavior.

class RetrieveUserView(MultipleFieldLookupMixin, generics.RetrieveAPIView):
 queryset = User.objects.all()
 serializer_class = UserSerializer
 lookup_fields = ('account', 'username')

Using custom mixins is a good option if you have custom behavior that needs to be used.

Creating custom base classes

If you are using a mixin across multiple views, you can take this a step further and create your own set of base views that can then be used throughout your project. For example:

class BaseRetrieveView(MultipleFieldLookupMixin,
 generics.RetrieveAPIView):
 pass

class BaseRetrieveUpdateDestroyView(MultipleFieldLookupMixin,
 generics.RetrieveUpdateDestroyAPIView):
 pass

Using custom base classes is a good option if you have custom behavior that consistently needs to be repeated across a large number of views throughout your project.

PUT as create

Prior to version 3.0 the REST framework mixins treated PUT as either an update or a create operation, depending on if the object already existed or not.

Allowing PUT as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It’s also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning 404 responses.

Both styles “PUT as 404” and “PUT as create” can be valid in different circumstances, but from version 3.0 onwards we now use 404 behavior as the default, due to it being simpler and more obvious.

If you need to generic PUT-as-create behavior you may want to include something like this AllowPUTAsCreateMixin class [https://gist.github.com/tomchristie/a2ace4577eff2c603b1b] as a mixin to your views.

Third party packages

The following third party packages provide additional generic view implementations.

Django REST Framework bulk

The django-rest-framework-bulk package [https://github.com/miki725/django-rest-framework-bulk] implements generic view mixins as well as some common concrete generic views to allow to apply bulk operations via API requests.

Django Rest Multiple Models

Django Rest Multiple Models [https://github.com/Axiologue/DjangoRestMultipleModels] provides a generic view (and mixin) for sending multiple serialized models and/or querysets via a single API request.

 © Copyright .
 Created using Sphinx 1.3.1.

